
Lecture Notes in Physics 
Editorial Board 

H. Araki, Kyoto, Japan 
R. Beig, Vienna, Austria 
J. Ehlers, Potsdam, Germany 
U. Frisch, Nice, France 
K. Hepp, Ziirich, Switzerland 
R. L. Jaffe, Cambridge, MA, USA 
R. Kippenhahn, G6ttingen, Germany 
H. A. Weidenmi.iller, Heidelberg, Germany 
J. Wess, Miinchen, Germany 
J. Zittartz, K61n, Germany 

Managing Editor 

W. Beiglb6ck 
Assisted by Mrs. Sabine Lehr 
c/o Springer-Verlag, Physics Editorial Department II 
Tiergartenstrasse 17, D-69121 Heidelberg, Germany 

Springer 
Berlin 
Heidelberg 
New York 
Barcelona 
Budapest 
Hong Kong 
London 
Milan 
Paris 
Santa Clara 
Singapore 
Tokyo 



The Editorial Policy for Proceedings 

The series Lecture Notes in Physics reports new developments in physical research and teaching - quickly, 
informally, and at a higb level.Th e proceedings to be considered for publication in this series should be limited 
to only a few areas of research, and these should be closely related to each other. The contributions should be 
of a high standard and should avoid lengthy redraftings of papers already published or about to be published 
elsewhere. As a whole, the proceedings should aim for a balanced presentation of the theme of the conference 
including a description of the techniques used and enough motivation for a broad readership. It should not 
be assumed that the pubIished proceedings must reflect the conference in its entirety. (A listing or abstracts 
of papers presented at the meeting but not included in the proceedings could be added as an appendix.) 
When applying for publication in the series Lecture Notes in Physics the volume's editor(s) should submit 
sufficient material to enable the series editors and their referees to make a fairly accurate evaluation (e.g. a 
complete list of speakers and titles of papers to be presented and abstracts). If, based on this information, the 
proceedings are (tentatively) accepted, the volume's editor(s), whose name(s) will appear on the title pages, 
should select the papers suitable for publication and have them refereed (as for a journal) when appropriate. 
As a rule discussions will not be accepted. The series editors and Springer-Verlag will normally not interfere 
with the detailed editing except in fairly obvious cases or on technical matters. 
Final acceptance is expressed by the series editor in charge, in consultation with Springer-Verlag only after 
receiving the complete manuscript. It might help to send a copy of the authors' manuscripts in advance to the 
editor in charge to discuss possible revisions with him. As a general rule, the series editor will confirm his 
tentative acceptance if the final manuscript corresponds :o the original concept discussed,if the quality of the 
contribution meets the requirements of the series, and if the final size of the manuscript does not greatly 
exceed the number of pages originally agreed upon. The manuscript should be forwarded to Springer-Verlag 
shortly after the meeting. In cases of extreme delay (more than six months after the conference) the series 
editors will check once more the timeliness of the papers. Therefore, the volume's editor(s) should establish 
strict deadlines, or collect the articles during the conference and have them revised on the spot. If a delay is 
unavoidable, one should encourage the authors to update their contributions if appropriate. The editors of 
proceedings are strongly advised to inform contributors about these points at an early stage. 
The final manuscript should contain a table of contents and an informative introduction accessible also to 
readers not particularly familiar with the topic of the conference. The contributions should be in English. The 
volume's editor(s) should check the contributions for the correct use of language. At Springer-Verlag only the 
prefaces will be checked by a copy-editor for language and style. Grave linguistic or technical shortcomings 
may lead to the rejection of contributions by the series editors. A conference report should not exceed a total 
of 5oo pages. Keeping the size within this bound should be achieved by a stricter selection of articles and not 
by imposing an upper limit to the length of the individual papers. Editors receive jointly 3o complimentary 
copies of their book. They are entitled to purchase further copies of their book at a reduced rate. As a rule no 
reprints of individual contributions can be supplied. No royalty is paid on Lecture Notes in Physics volumes. 
Commitment to publish is made by letter of interest rather than by signing a formal contract. Springer-Verlag 
secures the copyright for each volume. 

The Production Process 

The books are hardbound,and the publisher will select quality paper appropriate to the needs of the author(s). 
Publication time is about ten weeks. More than twenty years of experience guarantee authors the best possible 
service, To reach the goal of rapid publication at a low price the technique of photographic reproduction from 
a camera-ready manuscript was chosen. This process shifts the main responsibility for the technical quality 
considerably from the publisher to the authors. We therefore urge all authors and editors of proceedings to 
observe very carefully the essentials for the preparation of camera-ready manuscripts, which we will supply 
on request. This applies especially to the quality of figures and halftones submitted for publication. In 
addition, it might be useful to look at some of the volumes already published. As a special service, we offer free 
of charge LATEX and TEX macro packages to format the text according to Springer-Verlag's quality require- 
ments. We strongly recommend that you make use of this offer, since the result will be a book of considerably 
improved technical quality. To avoid mistakes and time-consuming correspondence during the production 
period the conference editors should request specialinstructions from the publisher well before the beginning 
of the conference. Manuscripts not meeting the technical standard of the series will have to be returned for 
improvement. 

For further information please contact Springer-Verlag, Physics Editorial Department II,Tiergartenstrasse 17, 
D-69121 Heidelberg, Germany 



Daniel Joubert (Ed.) 

Density Functionals: 
Theory and Applications 
Proceedings of the Tenth Chris Engelbrecht 
Summer School in Theoretical Physics 
Held at Meerensee, near Cape Town 
South Africa, 19-29 January 1997 

_~, ' Springer 



Editor 

Daniel Joubert 
Physics Department 
University of the Witwatersrand 
P.O. Wits 2o5o 
Johannesburg, South Africa 

Cataloging-in-Publication Data applied for. 

Die Deutsche Bibliothek - CIP-Einhcitsaulnahme 

Density functionals : theory and applications ; proceedings of the 
Tenth Chris Engelbrecht Summer School ill Theoretical Physics, held 
at Meerensee, near Cape Town, South Africa, 19 - 29 January 1997 / 
Daniel Joubert (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; 
Budapest ; Hong Kong ; London ; Milan ; Paris ; Santa Clara ; 
Singapore ; Tokyo : Springer, 1998 

(Lecture notes in physics ; Vol. 500) 
ISBN 3-540-63937-3 

ISSN 0075-8450 
ISBN 3-540-63937-3 Springer-Verlag Berlin Heidelberg NewYork 

This work is subject to copyright. All rights are reserved, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, re-use of illustra- 
tions, recitation, broadcasting, reproduction on microfilms or in any other way, and 
storage in data banks. Duplication of this publication or parts thereof is permitted only 
under the provisions of the German Copyright Law of September 9, 1965, in its current 
version, and permission for use must always be obtained from Springer-Verlag.Violations 
are liable for prosecution under the German Copyright Law. 

© Springer-Verlag Berlin Heidelberg 1998 
Printed in Germany 

The use of general descriptive names, registered names, trademarks, etc. in this publica- 
tion does not imply, even in the absence of a specific statement,that such names are exempt 
from the relevant protective laws and regulations and therefore free for general use. 

Typesetting: Camera-ready by the authors and editor 
Cover design: design ~rproduction GmbH, Heidelberg 
SPIN: 10644026 55/3144-543210 - Printed on acid-free paper 



Preface  

Density functional theory for electrons in atoms, molecules and solids has a 
long and increasingly rich and successful history that  has its roots in the early 
development of quantum mechanics. During the past decades, application of 
density functional theory has become the most effective method for the cal- 
culation of ground-state structural and electronic properties of molecules and 
solids. Exchange-and-correlation functionals of increasing sophistication now 
make it possible to perform calculations to chemical accuracy (~  1 kcal/mol) 
for many systems. Active research is leading to successful methods dealing 
with excited states and there is significant progress in the development of a 
relativistic density functional formalism. 

The 45 lectures delivered at the 10th Chris Engelbrecht Summer School in 
Theoretical Physics covered a wide range of aspects of density functional the- 
ory for electrons, including non-relativistic as well as relativistic approaches. 
The lecturers are leading experts in density functional theory and their knowl- 
edge and enthusiasm made the lectures exciting and the school a great suc- 
cess. The background of the participants was mixed, ranging from graduate 
students, who were setting out on research programmers, to established prac- 
ticants of density functional theory. They included experimentalists as well 
as theoreticians. The material presented at the School and reflected in this 
volume consequently offers an introduction to and an overview of the sub- 
ject as well as reviews of some of the most recent developments in the field. 
The material contained in this volume was contributed by the lecturers and 
collaborators who did not participate in the school. Not all the material dis- 
cussed at the school is included here, but the volume covers selected topics 
in more depth and with extensive references. 

The Organising Committee is indebted to the Foundation for Research 
Development for its continuing financial support, without which it would 
not be possible to organise this series of summer schools, which is of great 
value to the South African theoretical physics community. We would like to 
thank Erna Pheiffer, without whose administrative expertise and unstinting 
dedication the school would not have been a success. 



VI 

I would like to thank the members of the Organising Committee for their 
support in organising the school. Finally I wish to express my thanks to 
the editors of Lecture Notes in Physics for assistance and advice during the 
preparation of the manuscript. 

Exeter, United Kingdom 
November 1997 Daniel Joubert 
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Fundamentals of Density Functional Theory 

Walter Kohn 

University of California, Department of Physics, Santa Barbara, CA 93106 

1 I n t r o d u c t i o n  

Density functional theory (DFT) is primarily a theory of the electronic struc- 
ture of atoms, molecules and solids in their ground states, in which the elec- 
tronic density distribution n(r) plays the central role. 

Traditionally electronic structure problems were attacked by finding ap- 
proximate solutions of the Schrhdinger equation 

( h2 2 l j ~ i  e2 ]rj--ri, ) E (1) 

J 

where 
Zic 2 

v( j) = - Irj-- ,l ' (2) 
I 

N is the number of electrons, i and j run from 1 to N, tL  and Zi are the 
coordinates and atomic numbers of the nuclei. The spin variables have been 
suppressed. The boundary condition is that ~ vanishes when any Irll -+ oc. 
The most important characteristics of the ground state electronic structure 
are the electronic density distribution n(r) and the total energy E, for given 
locations Ri of the nuclei. 

Eq. (1) is a non-trivial many body problem even for N is as small as 2 
or 3 (He, Li, H2 etc.). The traditional configuration interaction methods of 
quantum chemistry can provide the ground state energy of molecules with the 
chemically required accuracy of ,-~0.2 eV only up to a maximum number No, 
which is in the vicinity of 10. For large values of N, the computing time T rises 
very rapidly so that,  even with major improvements in computing power, one 
runs into an almost impenetrable "wall", and traditional methods generally 
cannot handle chemical systems with N > 10. 

DFT has attracted the interests of solid state physicists, and in recent 
years also of chemists and others, primarily for the following three reasons: 
(1) the 3-dimensional density, n(r), is much easier to think about than the 
3N-dimensional wavefunction, ~; (2) computational simplicity; and (3) its 
capability to handle infinite periodic systems ( no N-dependence) and non- 
periodic systems of very many atoms, currently on the order of 103. 

In section 2 I sketch the elements of DFT. In section 3, I list, and briefly 
comment on, the most important generalizations, Section 4 presents conclud- 
ing remarks. Many quantitative applications will be given by other speakers. 
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The aim of these lectures is to provide a basis for the following more spe- 
cialized presentations. There exist several excellent monographs and reviews 
such as [1], [6]. 

2 Basic Density Functional Theory 

DFT in its modern form originated from the observation [2] that, for an 
interacting N-electron system in a general external potential v(r), a knowl- 
edge of the groundstate density n(r) u n i q u e l y  determines v(r) (to within a 
physically irrelevant additive constant): 

n(r) -+v( r )  . (3) 

This is true whether the ground state is non-degenerate or degenerate (In the 
latter case any of the possible ground state densities uniquely determines the 
potential v(r)). 

Because of the key importance of this observation, the simple proof, for 
non-degenerate ground states, will now be presented: 

Let v(r) be the external potential of the system, with associated ground 
state density n(r), total number of particles N = f n(r)dr,  Hamiltonian H 
and ground state and energy, ~P and E, 

v:  H , N , n ( r ) , ~ , E  . (4) 

Similarly consider a second system of N particles with 

v '  H' ,  n'(r), N, ~', E'  , (5) 

where v ' ¢ v  + C, and hence ~P~#~P. Then, by the Rayleigh Ritz variational 
principle 

E = (~, H ~ )  < (~',  H ~ ' )  = (~',  H ' ¢ ' )  + / ( v ( r ) - v ' ( r ) ) n ' ( r ) d r  , (6) 

o r  

< E / +  j ( v ( r )  - v '(  b f r ) ) n ' ( r ) d r  . E (7a) 

The inequality, <, follows from the fact that ~'¢~P. Similarly, 

< E + f ( v ' ( r )  - v ( r ) ) n ( r ) d r  . E / (Tb) 

Adding the inequalities (7a) and (7b) gives 

(E + E')  < (E + E')  + f ( v ( r )  - v '(r))(n '(r)  - n(r))dr  . (S) 
J 
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The possibility n ' ( r ) =  n(r) is excluded since (8) would result in 0 < 0. Thus 
any potential v'(r) except v(r) + c, leads to an n ' ( r )~n(r ) .  Q.E.D. 

The simple observation (3) has far-reaching consequences. Since n(r) de- 
termines v(r) and, trivially, also N, it deternfines H; hence, implicitly, also 
all properties derivable from H such as the many electron ground state wave 
function ¢ ( r l  • • • rN) and energy E, excited state wave functions and energies, 
Green's functions etc. 

The total ground state energy of a system can be written as 

E = (~, VO) + (~, (T + U)45) , (9) 

where the terms on the right hand side are the expectation values of the 
external potential-, kinetic energy- and interaction energy operators. Clearly 

(~, V¢) = f v ( r ) n ( r ) d r  , (10) 
J 

while the quantity 
Fin] = (~, (T + U)¢) (11) 

is a functional of n(r) (through ~[n], defined for any physical n(r) corre- 
sponding to some  v(r). (Such densities are called v-representable.) Thus, 

E ~ Ev( r ) [n ( r ) ]  ~ fv(r) n ( r ) d r  -4- F[n(r)] . (12) 

Using the Rayleigh Ritz principle for the ground state energy leads rather 
simply to the conclusion that, for a given v(r), the expression (12) is a min -  
i m u m  for the correct ground state density n(r) [2]: 

Here is the original proof, given for a non-degenerate groundstate ~'  with 
energy E0. Let ¢ '  be a trial state. Then, by the conventional Rayleigh-Ritz 
principle, 

E[4~'] = (45', (T + V + U)4~') > E0 , (13) 

or  
f 

Ev[n'(r)] - -Jv ( r )n ' ( r )dr  + F[n'(r)] > E0 . (14) 

The equality sign holds only if ~ '  = ~. This is the Hohenberg-Kohn energy 
variational principle. Note that, so far, F[n'(r)] is defined only abstractly 
through Eq. (11) but not yet constructively. 

The proof can be extended to degenerate ground states, leading again 
to Eq. (14). The equality is now obtained for any n'(r) of one of the many 
groundstates. An improved derivation was later given independently by [4], 
and [5], by the so-called constrained search process: 

By the conventional Rayleigh Ritz principle we have 
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E0 = min(~', H~' )  (15) 

We now sort all trial functions into classes according to the densities nl(r) to 
which they give rise. We then minimize in two stages 

E0 = min min (4', H~ ' )  = min[ f v(r)n' (r) dr + F[n'(r)] , (16) 
,~'(r) +' ,~'(r) J (.'[~'1=,~' (~)) 

where 
F [n'(r)] - min (~', (T + U)~' , (17) 

4,t 
( ,d id ' l= . '  (~)) 

i.e. F[n'(r)] is the minimum subject to the constraint n[O'] = n'(r). (Note 
that  the Hohenberg-Kohn definition of F[n'(r)] applies only to densities which 
are ground state densities, while the definition (17) pertains to a broader class 
of densities. Further, degenerate states are automatically covered.) 

Thus if the functional F[n(r)] is known with sufficient accuracy, the 
ground state energy and density for any electronic system, no matter the 
number of electrons, can be determined by minimizing (14) with respect to 
the 3-dimensional n'(r). (The crudest Ansatz for F[n(r)] gives the familiar 
Thomas Fermi approximation). 

The functional F[n] represents the kinetic and interaction energies. It is 
advantageous to write it as 

1 
F[n]-T,[n] + 2 J  Ir - r '  I drdr '  + Exein] , (18) 

where T, [n] is the kinetic energy of non-interacting electrons of density n(r), 
the next term is the classical (or mean value) electron-electron interaction en- 
ergy, and E~c[n] is the remainder, normally a small fraction of F[n]. The first 
two terms are chosen so that, when E,c is completely neglected, minimization 
of E~(r)[n], Eq. (8) leads to the Hartree equations. W i t h  inclusion of E,¢[n] 
one is led to the so-called Kohn Sham (KS) self-consistent equations, [3], 

+ + l - ~ - : - z d r  +v,c ( r )  ~i(r)  =ei~oj(r) , (19) 
2m j i r - -  r'l 

where 

and 

(20) v=(r )  =  n(r) 

N 
n(r) = Z l~o j ( r ) l :  . (21) 

1 

The total energy is 

N 1 
E = ~-J3-2 f n(r) n(r') drdr'- f ~----~ + E=c[n(r)] . (22) 
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In principle, if the exact E~[n] were used in these equations, the result- 
ing self-consistent density n(r) and energy, E, would be exact,  including all 
many body effects. Of course, in real life one must content oneself with ap- 
proximation for Ext. The simplest of these-which has become a benchmark 
for all others-is the local density approximation, LDA: 

ELDA[n(r)] =~ /e~c(n(r))n(r)dr (23) 

where e~c(n) is the exchange-correlation energy per electron of a un i fo rm 
electron gas of density n, which is known to great accuracy (~0.1%) from 
independent studies of the uniform electron gas. The corresponding v~ is, 
by Eq. (20), given by 

v~c(r) = n(r)(Oe~c(n)/On)~=,(r) + e~c(n(r)) . (24) 

Refinements of the LDA include the so-called generalized gradient approxi- 
mations, GGA, ([7]), 

EGGA / xc ---- f(n(r),  IVn(r)l)dr . (25) 

Judicious choice of the form of f(n, IVn]), a function of two variables, typ- 
ically reduces the error of the LDA by a factor of 2 to 10. This is an area 
of active research. (The most obvious gradient correction to the LDA is a 
systematic gradient expansion 

Ezc =/e~c(n(r))n(r)dr ÷/g(n(r))lVn(r)]2dr +... (26) 

but this is generally of little quantitative value.) 

3 G e n e r a l i z a t i o n s  

(See Parr and Yang (1989) [6] and Dreizler and Gross (1990) [i]. ) 
The principle of DFT, considering the density n(r) as the basic variable and 
representing many body effects in a density functional such as Exc[n(r)], has 
been generalized in many directions. Here we list the most important ones, 
with indications of the relevant densities. 

a) Degenera te  G r o u n d  States.  
b) Spin Dens i ty  Funct ional  Theory.  

Separate spin up and spin down densities nl.(r),n4(r ) are introduced. 
Paramagnetism, cooperative magnetism. 

c) M u l t i c o m p o n e n t  Systems.  
n l(r),  • . .nM(r  ). Nuclei (= protons + neutrons); electron-hole droplets in 
semiconductors. 
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d) Free Energy  for Fini te  Tempera tu r e .  
n(r; T). Plasmas 

e) Exc i ted  Sta tes .  
n(r) = M - l ~ M n j ( r ) ,  where nj(r) is the density of the j '  the excited 
state 
E =  1 M Ej 
(See also i below.) 

f)  Orb i t a l  Magne t i sm.  
n(r) (normal density) and fi(r) (superconducting density) 
Diamagnetism, quantum Hall effect. 

g) Supe rconduc to r s .  
n(r) (normal density) and fi(r) (superconducting density) 

h) Rela t iv i s t ic  Elect rons .  
n(r) (EW(n) ¢ 

i) T i m e - D e p e n d e n t  P h e n o m e n a .  
v(r, t), n(r, t) 
Applications to first order response theory for given frequency w. Poles 
of response function give excited state energies. 

4 C o n c l u d i n g  R e m a r k s  

More than 30 years after its beginning, DFT has become one of the stan- 
dard methods for studying ground state energies and density distributions 
of systems containing many electrons. It is in the writer's opinion, limited 
to a modest accuracy, typically 0.1 - 0.5 eV, for physically or chemically rel- 
evant energy differences. For determination of structures (corresponding to 
energy minima) it is generally surprisingly accurate, giving interatomic dis- 
tances with a typical accuracy of +0.02)i. In the last decade, thoughtful and 
energetic analyses and improved approximations, which will be described in 
subsequent lectures, have been improving the accuracy of DFT until, today, 
it is, for many types of systems, close to or within the so-called chemical ac- 
curacy of 0.1 - 0.2 eV. Although further progress is becoming more difficult 
it is continuing. 

Two other important developments, covered in later lectures of this course 
have been taking place in recent years: DFT algorithms which scale linearly 
in the number of atoms; and inclusion of polarization (or Van der Waals-) 
energies, which are not included in traditional approximations. 

An important concept in DFT is the exchange-correlation hole nxc(r, r') 
which describes the depletion of the density at point r, given that there is 
an electron at point r '  A knowledge of nxc (as function of the "coupling con- 
stant" e) allows one to calculate the all-important Exc of Eq. (13). Detailed 
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studies of different classes of chemical and physical systems are providing 
increasing understanding of n~¢ and throw new light on electronic energies. 

It would be too long to try and summarize all the other ongoing direc- 
tions of research and applications. Let me conclude by remarking that the 
electronic density distribution, n(r) ,  has now joined the traditional single 
electron orbitals, ~ j ( r ) ,  as an important  characterization, both qualitative 
and quantitative, of physical and chemical systems with many electrons. 

Acknowledgment 

I would like to express my appreciation to the organizers of this school for 
giving me an opportunity to contribute to the scientific life of the new South 
Africa. Support of NSF grant No. DMR9630452 is gratefully acknowledged. 

References 

1. R.M. Dreizler and E.K.U. Gross, Density Functional Theory (Springer, Berlin, 
1990). (Primarily for physicists). 

2. P. Hohenberg and W. Kohn, Iahomogeneous Electron Gas, Phys. Rev. 136, 
B864 (1964). 

3. W. Kohn, and L. J. Sham, Serf-Consistent Equations including Exchange and 
Correlation Effects, Phys. Rev. 140A, 1133 (1965). 

4. M. Levy, Electron Densities in Search of Hamiltonians, Phys. Rev. A 26, 1200 
(1982). 

5. E. H. Lieb, Physics as Natural Philosophy, ed. by A. Skimory and H. Feshback 
(MIT Press, Cambridge, MA, 1982), 111. 

6. R.G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules 
(Oxford University Press, New York, 1989). (Primarily for chemists). 

7. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation 
Made Simple, Phys. Rev. Lett. 77, 3865 (I996). 



Density Functionals 
for Non-Relativistic Coulomb Systems 

John P. Perdew and Stefan Kurth 

Department of Physics and Quantum Theory Group 
Tulane University, New Orleans, LA 70118, USA 

O u t l i n e  

1 Introduction 
1.1 Quantum Mechanical Many-Electron Problem 
1.2 Summary of Kohn-Sham Spin-Density Functional Theory 

2 Wavefunction Theory 
2.1 Wavefunctions and Their Interpretation 
2.2 Wavefunctions for Non-Interacting Electrons 
2.3 Wavefunction Variational Principle 
2.4 Hellmann-Feynman Theorem 
2.5 Virial Theorem 

3 Definitions of Density Functionals 
3.1 Introduction to Density Functionals 
3.2 Density Variational Principle 
3.3 Kohn-Sham Non-Interacting System 
3.4 Exchange Energy and Correlation Energy 
3.5 Coupling-Constant Integration 

4 Formal Properties of Functionals 
4.1 Uniform Coordinate Scaling 
4.2 Local Lower Bounds 
4.3 Spin Scaling Relations 
4.4 Size Consistency 
4.5 Derivative Discontinuity 

5 Uniform Electron Gas 
5.1 Kinetic Energy 
5.2 Exchange Energy 
5.3 Correlation Energy 
5.4 Linear Response 
5.5 Clumping and Adiabatic Connection 

6 Local and Semi-Local Approximations 
6.1 Local Spin Density Approximation 
6.2 Gradient Expansion 
6.3 History of Several Generalized Gradient Approximations 
6.4 Construction of a "GGA Made Simple" 
6.5 GGA Nonlocality: Its Character, Origins, and Effects 

References 



Density Functionals for Non-Relativistic Coulomb Systems 9 

1 I n t r o d u c t i o n  

1.1 Quantum Mechanical Many-Electron Problem 

The material world of everyday experience, as studied by chemistry and con- 
densed-matter physics, is built up from electrons and a few (or at most a few 
hundred) kinds of nuclei. The basic interaction is electrostatic or Coulombic: 
An electron at position r is attracted to a nucleus of charge Z at R by the 
potential energy -Z/Ir - RI, a pair of electrons at r and r '  repel one an- 
other by the potential energy 1/Ir - r 'l, and two nuclei at R and R '  repel 
one another as Z'Z/IR-R' I. The electrons must be described by quantum 
mechanics, while the more massive nuclei can sometimes be regarded as clas- 
sical particles. All of the electrons in the lighter elements, and the chemically 
important  valence electrons in most elements, move at speeds much less than 
the speed of light, and so are non-relativistic. 

In essence, that  is the simple story of practically everything. But there 
is still a long path from these general principles to theoretical prediction of 
the structures and properties of atoms, molecules, and solids, and eventually 
to the design of new chemicals or materials. If we restrict our focus to the 
important  class of ground-state properties, we can take a shortcut through 
density functional theory. 

These lectures present an introduction to density functionals for non- 
relativistic Coulomb systems. The reader is assumed to have a working knowl- 
edge of quantum mechanics at the level of one-particle wavefunctions ¢(r )  
[1]. The many-electron wavefunction ~P(rl, r 2 , . . . ,  rN) [2] is briefly introduced 
here, and then replaced as basic variable by the electron density n(r).  Various 
terms of the total energy are defined as functionals of the electron density, and 
some formal properties of these functionals are discussed. The most widely- 
used density functionals - the local spin density and generalized gradient 
approximations-  are then introduced and discussed. At the end, the reader 
should be prepared to approach the broad literature of quantum chemistry 
and condensed-matter physics in which these density functionals are applied 
to predict diverse properties: the shapes and sizes of molecules, the crys- 
tal structures of solids, binding or atomization energies, ionization energies 
and electron affinities, the heights of energy barriers to various processes, 
static response functions, vibrational frequencies of nuclei, etc. Moreover, the 
reader's approach will be an informed and discerning one, based upon an un- 
derstanding of where these functionals come from, why they work, and how 
they work. 

These lectures are intended to teach at the introductory level, and not 
to serve as a comprehensive treatise. The reader who wants more can go to 
several excellent general sources [3-5] or to the original literature. Atomic 
units (in which all electromagnetic equations are written in cgs form, and 
the fundamental constants h, e 2, and m are set to unity) have been used 
throughout.  
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1.2 S u m m a r y  o f  K o h n - S h a m  S p i n - D e n s i t y  bhmctional  T h e o r y  

This introduction closes with a brief presentation of the Kohn-Sham [6] 
spin-density functional method, the most widely-used method of electronic- 
structure calculation in condensed-matter physics and one of the most widely- 
used methods in quantum chemistry. We seek the ground-state total energy 
E and spin densities a t ( r ) ,  n L(r) for a collection of N electrons interacting 
with one another and with an external potential v(r) (due to the nuclei in 
most practical cases). These are found by the self-consistent solution of an 
auxiliary (fictitious) one-electron Schr5dinger equation: 

- V2+v(r)+u([n];r)+v×¢([nt ,n,];r)  , / ; ~ ( r ) = c ~ ¢ ¢ ~ o ( r )  , (1) 

n~,(r) = E O ( #  - e~)l~z~a(r)l 2 . (2) 

Here (r ---1" or $ is the z-component of spin, and a stands for the set of 
remaining one-electron quantum numbers. The effective potential includes a 
classical Hartree potential 

u([n]; r) = / d 3 r  ' 
n(r I) 

I;-Pl ' (3) 

n(r) = nl-(r ) + n,t(r) , (4) 

and a multiplicative spin-dependent exchange-correlation po- 
tential Vx¢([nt, n,t]; r), which is a functional of the spin densities. The step 
function 0(# - ~ o )  in Eq. (2) ensures that all Kohn-Sham spin orbitals with 
~ o  < # are singly occupied, and those with v~o > # are empty. The chemical 
potential p is chosen to satisfy 

/d3r (r) = N (5) 

Because Eqs. (1) and (2) are interlinked, they can only be solved by iteration 
to self-consistency. 

The total energy is 

Ts[nT, n$] + fd3rn(r)v(r) + U[n] + Exc[n,, n+] , (6) E 
J 

where 

is the non-interacting kinetic energy, a functional of the spin densities because 
(as we shall see) the external potential v(r) and hence the Kohn-Sham orbitals 
are functionals of the spin densities. In our notation, 
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(8) 

The second term of Eq. (6) is the interaction of the electrons with the external 
potential. The third term of Eq. (6) is the Hartree electrostatic self-repulsion 
of the electron density 

U[n] : 1 [d3 /d3 , . (r) . (r ' )  2 J  J (9) 

The last term of Eq. (6) is the exchange-correlation energy, whose functional 
derivative (as explained later) yields the exchange-correlation potential 

5Exc 
v~c([nt, nt]; r) - 6n~(r) (10) 

Not displayed in Eq. (6), but needed for a system of electrons and nuclei, is the 
electrostatic repulsion among the nuclei. E×c is defined to include everything 
else omitted from the first three terms of Eq. (6). 

If the exact dependence of Exc upon n 1, and nt were known, these equa- 
tions would predict the exact ground-state energy and spin-densities of a 
many-electron system. The forces on the nuclei , and their equilibrium posi- 
tions, could then be found from OE 

0t l ."  
In practice, the exchange-correlation energy functional must be approxi- 

mated. The local spin density [6, 7] (LSD) approximation has long been pop- 
ular in solid state physics: 

ELSDr ' /d3rn(r)e×¢(nt(r), (11) xc [nt, n,~j : n~(r)) 

where e×~(nt, n.L) is the known [8-10] exchange-correlation energy per particle 
for an electron gas of uniform spin densities nt,  nt. More recently, generalized 
gradient approximations (GGA's) [11-21] have become popular in quantum 
chemistry: 

GGA /d3rf(nt ,  nl, Vn t, Vat) (12) [at, n,] = 

The input e×~(nt, at) to LSD is in principle unique, since there is a pos- 
sible system in which n 1- and n,  are constant and for which LSD is exact. 
At least in this sense, there is no unique input f(nT, n~., Vnt,  Vn.t) to GGA. 
These lectures will stress a conservative "philosophy of approximation" [20, 
21], in which we construct a nearly-unique GGA with all the known correct 
formal features of LSD, plus others. 

The equations presented here are really all that we need to do a practical 
calculation for a many-electron system. They allow us to draw upon the 
intuition and experience we have developed for one-particle systems. The 
many-body effects are in U[n] (trivially) and E×¢[nt, n,t] (less trivially), but 
we shall also develop an intuitive appreciation for E×~. 
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While E×c is often a relatively small fraction of the total energy of an 
a tom,  molecule, or solid (minus the work needed to break up the system 
into separated electrons and nuclei), the contribution from E×c is typically 
about  100 % or more of the chemical bonding or atomization energy (the 
work needed to break up the system into separated neutral atoms). Exc is a 
kind of "glue", without which atoms would bond weakly if at all. Thus, ac- 
curate approximations to Exc are essential to the whole enterprise of density 
functional theory. Table 1 shows the typical relative errors we find from self- 
consistent calculations within the LSD or GGA approximations of Eqs. (11) 
and (12). Table 2 shows the mean absolute errors in the atomization energies 
of 20 molecules when calculated by LSD, by GGA, and in the Hartree-Fock 
approx imat ion .  Hartree-Fock treats exchange exactly, but neglects correla- 
tion completely. While the Hartree-Fock total  energy is an upper bound to 
the true ground-state total  energy, the LSD and GGA energies are not. 

Table  1. Typical errors for atoms, molecules, and solids from self-consistent 
Kohn-Sham calculations within the LSD and GGA approximations of Eqs. (11) 
and (12). Note that there is typically some cancellation of errors between the ex- 
change (Ex) and correlation (Ec) contributions to E~c. The "energy barrier" is the 
barrier to a chemical reaction that arises at a highly-bonded intermediate state. 

Property LSD GGA 
Ex 5 % (not negative enough) 0.5 % 
Ec 100 % (too negative) 5 % 
bond length 1% (too short) 1% (too long) 
structure overly favors close packing more correct 
energy barrier 100 % (too low) 30 % (too low) 

Table  2. Mean absolute error of the atomization energies for 20 molecules, evalu- 
ated by various approximations. (1 hartree --- 27.21 eV) (From Ref. [20].) 

Approximation 
Unrestricted Hartree-Fock 
LSD 
GGA 
Desired "chemical accuracy" 

Mean absolute error (eV) 
3.1 (underbinding) 
1.3 (overbinding) 
0.3 (mostly overbinding) 
0.05 

In most  cases we are only interested in small total-energy changes asso- 
ciated with re-arrangements of the outer or valence electrons, to which the 
inner or core electrons of the atoms do not contribute. In these cases, we 
can replace each core by the pseudopotential [22] it presents to the valence 
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electrons, and then expand the valence-electron orbitals in an economical 
and convenient basis of plane waves. Pseudopotentials are routinely com- 
bined with density functionals. Although the most realistic pseudopotentials 
are nonlocal operators and not simply local or multiplication operators, and 
although density functional theory in principle requires a local external po- 
tential, this inconsistency does not seem to cause any practical difficulties. 

There are empirical versions of LSD and GGA, but these lectures will 
only discuss non-empirical versions. If every electronic-structure calculation 
were done at least twice, once with nonempirical LSD and once with nonem- 
pirical GGA, the results would be useful not only to those interested in the 
systems under consideration but also to those interested in the development 
and understanding of density functionals. 

2 W a v e f u n c t i o n  T h e o r y  

2.1 Wavefunct ions  and Their Interpretat ion 

We begin with a brief review of one-particle quantum mechanics [1]. An 
1 1 electron has spin s -- ½ and z-component of spin q = +7  (]~) or - 7  (J,)' 

The Hamiltonian or energy operator for one electron in the presence of an 
external potential v(r) is 

]~ = - 1 V 2  + v(r) . (13) 
2 

The energy eigenstates ¢~ (r, c~) and eigenvalues ca are solutions of the time- 
independent SchrSdinger equation 

]~¢~(r, c~) = e~¢~(r, a) , (14) 

and I¢~ (r, g)[2d3r is the probability to find the electron with spin c~ in volume 
element d3r at r, given that it is in energy eigenstate ¢~. Thus 

/da r i en ( r ,  g)l 2 = (~b]ga) = 1 . (is) 
, ]  

f f  

Since h commutes with gz, we can choose the ¢~ to be eigenstates of ~ ,  i.e., 
we can choose a --1" or $ as a one-electron quantum number. 

The Hamiltonian for N electrons in the presence of an external potential 
v(r) is [2] 

N N 

/~ = E 2 ' + E v ( r i ) +  ~ Ir, -r~l 
i=1  i = l  " " " 

: ~% ql- Yext -~- ~ree • ( 1 6 )  

The electron-electron repulsion l/ee sums over distinct pairs of different elec- 
trons. The states of well-defined energy are the eigenstates of/:/:  
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Hek (~1~1,..., ruiN)  = Ekek ( ~ 1 , . . . ,  ~ N ~ )  , (17) 

where k is a complete set of many-electron quantum numbers; we shall be 
interested mainly in the ground state or state of lowest energy, the zero- 
temperature equilibrium state for the electrons. 

Because electrons are fermions, the only physical solutions of Eq. (17) 
are those wavefunctions that are antisymmetric [2] under exchange of two 
electron labels i and j: 

~ ( r l a l ,  . •., r i a i  , . . . , r jc~j ,  . . . , rNCr  N ) ---- 

- ~ ( r l ¢ l , . . . , r j c ' j , . . . , r i c q , . . . , r N a g )  • (18) 

There are N[ distinct permutations of the labels 1, 2 , . . . ,  N, which by Eq. (18) 
all have the same I~12, Thus Y[ I#(r lc ,1, . . . ,  r N c ' g ) 1 2 d 3 r l . . ,  d 3 r y  is the prob- 
ability to find a n y  electron with spin (rl in volume element dart,  etc., and 

1 Z i d3r''ld''"N'l<~(r'<'' ,,.<<..),' l'+"--<+l+/:' 
O" 1 . . . O  N 

(19) 
We define the electron spin density no(r) so that no(r)d3r is the probabil- 

ity to find an electron with spin a in volume element d3r at r. We find no (r) 
by integrating over the coordinates and spins of the (N - 1) other electrons, 
i . e . ~  

_1 1)-----~ f d3r2 " S  d 3 r N N !  rNCrN)I2 no(r )  -- ( g  ° Z "" I~(,~,r~2,. . . ,  
2 - . . O N  

--- ~ Sd",...id",+l~(r'.',',..-..'u',<)l '. (20) 
O" 2 . . . O  N 

Equations (19) and (20) yield 

Z f d a r n ° ( r )  = N . 
O 

(21) 

Based on the probability interpretation of no (r), we might have expected the 
right-hand side of Eq. (21) to be 1, but that is wrong; the sum of probabilities 
of all mutually-exclusive events equals 1, but finding an electron at r does n o t  

exclude the possibility of finding one at V, except in a one-electron system. 
Eq. (21) shows that no(r)d3r is the average number of electrons of spin ~ in 
volume element d3r. Moreover, the expectation value of the external potential 
is 

N / *  

(9~x<) Z v(r i ) le)  = / d S r n ( r ) v ( r )  , (22) 
i----1 , 1  

with the electron density n(r) given by Eq. (4). 
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2.2 Wavefunctions for Non-Interacting Electrons 

As an important special case, consider the Hamiltonian for N non-interacting 
electrons: 

N 

i = 1  

The eigenfunctions of the one-electron problem of Eqs. (13) and (14) are spin 
orbitals which can be used to construct the antisymmetric eigenfunctions 
of/:/,~ on : 

/~rnon¢ = Enon¢ - (24) 

Let i stand for ri, a{ and construct the S]ater determinant or antisymmetrized 
product [2] 

i ¢ -  x/-~.~-~(-1)P¢,~(P1)¢,~(P2)...¢~(PN) , (25) 
P 

where the quantum label (~ now includes the spin quantum number c~. Here 
P is any permutation of the labels 1, 2 , . . . ,  N, and (-1)  p equals +1 for an 
even permutation and - 1  for an odd permutation. The total energy is 

E . o .  = E~. + ~ + . . .  + c~,,  , (26) 

and the density is given by the sum of ]¢=,(r)] 2. If any (~ equals any ~j in 
Eq. (25), we find # = 0, which is not a normalizable wavefunction. This is 
the Pauli exclusion principle : two or more non-interacting electrons may not 
occupy the same spin orbital. 

As an example, consider the ground state for the non-interacting helium 
atom (N = 2). The occupied spin orbitals are 

¢1(r,  ~) = ~ l s ( r ) ~ , t  , 

¢2(r ,  ~) = ~ ls (r )6o , ,  , 

and the 2-electron Slater determinant is 

1 I¢l(rl,C~l)¢2(rl,c~l) I 
~ ( 1 , 2 )  = ~ ¢ 1 ( r 2 , ~ ) ¢ 2 ( r ~ , ~ )  

(27) 

(28) 

(29) 

which is symmetric in space but antisymmetric in spin (whence the total spin 
is S = 0). 

If several different Slater determinants yield the same non-interacting en- 
ergy Enon, then a linear combination of them will be another antisymmet- 
ric eigenstate of/7/non. More generally, the Slater-determinant eigenstates of 
//non define a complete orthonormal basis for expansion of the antisymmetric 
eigenstates of/2/, the interacting Hamiltonian of Eq. (16). 
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2 . 3  W a v e f u n c t i o n  V a r i a t i o n a l  P r i n c i p l e  

The Schrbdinger equation (17) is equivalent to a wavefunction variational 
principle [2]: Extremize (~]HI~) subject to the constraint (kPlk~) = 1, i.e., set 
the following first variation to zero: 

} = 0 .  (30) 

The ground state energy and wavefunction are found by minimizing the ex- 
pression in curly brackets. 

The Rayleigh-Ritz method finds the extrema or the minimum in a re- 
strictedspace of wavefunctions. For example, the Hartree-Fock approximation 
to the ground-state wavefunction is the single Slater determinant • that  min- 
imizes <~IHI~>/<~I~>, The configuration-interaction ground-state wavefunc- 
tion [23] is an energy-minimizing linear combination of Slater determinants, 
restricted to certain kinds of excitations out of a reference determinant. The 
Quantum Monte Carlo method typically employs a trial wavefunction which 
is a single Slater determinant times a Jastrow pair-correlation factor [24]. 
Those widely-used many-electron wavefunction methods are both approx- 
imate and computationally demanding, especially for large systems where 
density functional methods are distinctly more efficient. 

The unrestricted solution of Eq. (30) is equivalent by the method of La- 
grange multipliers to the unconstrained solution of 

i.e., 

(31) 

((~I(H - E ) I ~ )  = 0 . (32) 

Since ~ is an arbitrary variation, we recover the SchrSdinger equation (17). 
Every eigenstate of /7/ is  an extremum of <¢'1~1~)/<~1~> and vice versa. 

The wavefunction variational principle implies the Hellmann-Feynman 
and virial theorems below and also implies the Hohenberg-Kohn [25] density 
functional variational principle to be presented later. 

2 . 4  H e l l m a n n - F e y n m a n  T h e o r e m  

Often the Hamiltonian /7/)` depends upon a parameter A, and we want to 
know how the energy E)` depends upon this parameter. For any normalized 
variational solution k~)  ̀(including in particular any eigenstate of /:/)`), we 
define 

E~ - -  (~)`  I~t~l¢,)`) . (33)  

Then 
dE), d i~)`,) )`'=)` 
dA - d,v (~)`'IH)` 

^ 

+ < ~ 1 - ~  I~)`> . (34) 
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The first term of Eq. (34) vanishes by the variational principle, and we find 
the Hellmann-Feynman theorem [26] 

dE~ 0/2/~ 
dA = ( ~  -b5 - I ~ )  " (35) 

Eq. (35) will be useful later for our understanding of E×c. For now, we 
shall use Eq. (35) to derive the electrostatic force theorem[26]. Let r~ be the 
position of the /-th electron, and RI  the position of the (static) nucleus I 
with atomic number ZI.  The Hamiltonian 

N 
1 Z I  Z j  

i=1 2 i I ~ J~tl  

(36) 
depends parametrically upon the position Rt ,  so the force on nucleus I is 

_ 

f d  Zi ( r  - RI) Z x Z j ( R I  - R j)  
= 3rn(r) [ r _  RII3 + E ~ R / / - R - j ~  ' (37) 

J ; t l  

just as classical electrostatics would predict. Eq. (37) can be used to find the 
equilibrium geometries of a molecule or solid by varying all the R1 until the 
energy is a minimum and - O E / O R t  = O. Eq. (37) also forms the basis for 
a possible density functional molecular dynamics , in which the nuclei move 
under these forces by Newton's second law. In principle, all we need for either 
application is an accurate electron density for each set of nuclear positions. 

2.5 V i r i a l  T h e o r e m  

The density scaling relations to be presented in section 4, which constitute 
important constraints on the density functionals, are rooted in the same 
wavefunction scaling that  will be used here to derive the virial theorem [26]. 

Let q t ( r l , . . . ,  rN) be any extremum of (~Pl/tlgt) over normalized wavefunc- 
tions, i.e., any eigenstate or optimized restricted trial wavefunction (where ir- 
relevant spin variables have been suppressed). For any scale parameter 3, > 0, 
define the uniformly-scaled wavefunction 

krt../(rl,... , rN)  = ~3N/2k~t(~r l , . . . ,  ~'rN) (38) 

and observe that  
( ~ l ~ t )  = (~t[~p)= 1 . (39) 

The density corresponding to the scaled wavefunction is the scaled density 

n~(r) = 73n(Tr) , (40) 
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which clearly conserves the electron number: 

fd3rnT(r) =/d3rn(r)  = N . (41) 

3' > 1 leads to densities n-y(r) that  are higher (on average) and more con- 
tracted than n(r), while 3' < 1 produces densities that  are lower and more 
expanded. 

Now consider what happens to (/:/) = (7~+ V) under scaling. By definition 
of ~, 

d~(~717~ + 91~7) = 0 (42) m 

"7=1 

But 7 ~ is homogeneous of degree -2 in r, so 

(~ ITI~7)  = 3'2(~1T1~) , 

and Eq. (42) becomes 

2<~17~1~,> + d<~Tlgl~vT> 
43' 7=1 

o r  

then 

(43) 

= 0 ,  (44) 

N 0 9  
2(~)  - ( Z  r~ . ~ )  = 0 _ (451 

/----1 

If the potential energy 9 is homogeneous of degree n, i.e., if 

V ( 3 " r i , .  . . ,  3"rN)  = 3 " n V ( r i ,  . . . , r N )  , (46) 

<~7191~> = 3'-"(~191~> , (47) 

and Eq. (44) becomes simply 

2<~ITI~ > - n<~lgl~  > = 0 . (48) 

For example, n = - 1  for the Hamiltonian of Eq. (36) in the presence of 
a single nucleus, or more generally when the Hellmann-Feynman forces of 
Eq. (37) vanish for the state ~. 
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3 D e f i n i t i o n s  o f  D e n s i t y  F u n c t i o n a l s  

3.1 Introduction to Density  Functionals 

The many-electron wavefunction ~P(rw1, . . . ,  rNO'N) contains a great deal of 
information-  all we could ever have, but more than we usually want. Because 
it is a function of many variables, it is not easy to calculate, store, apply or 
even think about. Often we want no more than the total energy E (and its 
changes), or perhaps also the spin densities n t ( r  ) and n$(r), for the ground 
state. As we shall see, we can formally replace kV by the observables n? and 
n$ as the basic variational objects. 

While a function is a rule which assigns a number f(x) to a number 
x, a functional is a rule which assigns a number F[f ]  to a function f .  For 
example, h[~P] = (~Pl/:/I~P> is a functional of the trial wavefunction ~P, given 
the Hamiltonian g. U[n] of Eq. (9) is a functional of the density n(r) ,  as is 
the local density approximation for the exchange energy: 

ELDA[n] = A×/d3rn(r) 4/3 (49) 

The functional derivative 5F/Sn(r) tells us how the functional F[n] changes 
under a small variation 5n(r): 

5F = 3r ~ 

For example, 

5ELDA = Ax/d3r{[n(r)+hn(r)]4/3-n(r) 4/a} 

= Ax /d3r4n(r)l/35n(r)3 

SO 

Similarly, 

5ELDA A. ~ 4n(r)1/3 
5--~(r) - 

(51) 

 u[n] 
= u( [n] ;  r)  , (52)  

where the right hand side is given by Eq. (3). Functional derivatives of various 
orders can be linked through the translational and rotational symmetries of 
empty space [27]. 
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3.2 Density Variational Principle 

We seek a density functional analog of Eq. (30). Instead of the original deriva- 
tion of Hohenberg, Kohn and Sham [25, 6], which was based upon "reductio 
ad absurdum", we follow the "constrained search" approach of Levy [28], 
which is in some respects simpler and more constructive. 

Eq. (30) tells us that  the ground state energy can be found by minimizing 
(k~[_f/[k~) over all normalized, antisymmetric N-particle wavefunctions: 

E ---- rn~n(gtl/:/Ik~ ) . (53) 

We now separate the minimization of Eq. (53) into two steps. First we con- 
sider all wavefunctions ~ which yield a given density n(r), and minimize over 
those wavefunctions: 

m2n(~][-I]~) = ~n2n(~lJ" + Vee]~) +/d3rv(r)n(r) , (54) 

where we have exploited the fact that  all wavefunctions that yield the same 
n(r) also yield the same (~lV¢×t Igt). Then we define the universal functional 

F[n] =  in( [2 + 9oel ) = ( 2 '12 + (55) 

where ~min is that  wavefunction which delivers the minimum for a given n. 
Finally we minimize over all N-electron densities n(r): 

E = rain Ev [n] 
r t  

=min{F[n]+fd3rv(r)n(r)} (56) 

where of course v(r) is held fixed during the minimization. The minimizing 
density is then the ground-state density. 

The constraint of fixed N can be handled formally through introduction 
of a Lagrange multiplier #: 

' {F[n]+ fd3rv(r)n(r)- tt fd3rn(r)} =O , (57) 

which is equivalent to the Euler equation 

5F 
+ v ( r )  = u . ( 5 8 )  

5n(r) 

/~ is to be adjusted until Eq. (5) is satisfied. Eq. (58) shows that the external 
potential v(r) is uniquely determined by the ground state density (or by any 
one of them, if the ground state is degenerate). 

The functional F[n] is defined via Eq. (55) for all densities n(r) which 
are "N-representable", i.e., come from an antisymmetric N-electron wave- 
function. We shall discuss the extension from wavefunctions to ensembles 
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in section 4.5. The functional derivative 5F/~n(r) is defined via Eq. (58) 
for all densities which are "v-representable", i.e., come from antisymmetric 
N-electron ground-state wavefunctions for some choice of external potential 
v(r). 

This formal development requires only the total density of Eq. (4), and 
not the separate spin densities n t ( r  ) and s t ( r ) .  However, it is clear how to get 
to a spin-density functional theory: just replace the constraint of fixed n in 
Eq. (54) and subsequent equations by that of fixed n 1- and n4. There are two 
practical reasons to do so: (1) This extension is required when the external 
potential is spin-dependent , i.e., v(r) -+ v~ (r), as when an external magnetic 
field couples to the z-component of electron spin. (If this field also couples to 
the current density j(r) ,  then we must resort to a current-density functional 
theory.) (2) Even when v(r) is spin-independent, we may be interested in 
the physical spin magnetization (e.g., in magnetic materials). (3) Even when 
neither (1) nor (2) applies, our local and semi-local approximations (nqs. (11) 
and (12)) typically work better when we use n¢ and n.L instead of n. 

3.3 Kohn-Sham Non-Interacting System 

For a system of non-interacting electrons, Wee of Eq. (16) vanishes so F[n] of 
Eq. (55) reduces to 

^ 

= (~n ITl~n ) . (59) fs[-]  min 

Although we can search over all antisymmetric N-electron wavefunctions in 
Eq. (59), the minimizing wavefunction ~min for a given density will be a non- 
interacting wavefunction (a single Slater determinant or a linear combination 
of a few) for some external potential Vs such that  

(~n(r) + us(r) -- # , (60) 

as in Eq. (58). In Eq. (60), the Uohn-Sham potential vs(r) is a functional of 
n(r). If there were any difference between # and Ps, the chemical potentials 
for interacting and non-interacting systems of the same density, it could be 
absorbed into Vs(r). We have assumed that n(r) is both interacting and non- 
interacting v-representable. 

Now we define the exchange-correlation energy E×c[n] by 

F[n] --- Ts[n] + U[n] + Exc[n] , (61) 

where U[n] is given by Eq. (9). The Euler equations (58) and (60) are con- 
sistent with one another if and only if 

3U[n] 3E×c (62) 
v~(r) ~- v(r) -t- 5-~(r) ÷ 5,(r----) 
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Thus we have derived the Kohn-Sham method [6] of section 1.2. 
The Kohn-Sham method treats T~[n] exactly, leaving only E×¢[n] to be 

approximated. This makes good sense, for several reasons: (1) Ts is typically 
a very large part of the energy, while Exc is a smaller part. (2) T~ is largely 
responsible for density oscillations of the shell structure and Friedel types, 
which are accurately described by the Kohn-Sham method. (3) E is somewhat 
better suited to the local and semi-local approximations than is T~[n], for 
reasons to be discussed later. The price to be paid for these benefits is the 
appearance oforbitals. If we had a very accurate approximation for T~ directly 
in terms of n, we could dispense with the orbitals and solve the Euler equation 
(60) directly for n(r). 

The total energy of Eq. (6) may also be written as 

E = Z 0(# - s~a)s~  - U[n] - fd3rn(r)Vxc([n]; r) + Ex¢[n] 
O¢O" 

(63) 

where the second and third terms on the right-hand-side simply remove con- 
tributions to the first term which do not belong in the total energy. The first 
term on the right of Eq. (63), the non-interacting energy E . . . .  is the only 
term that  appears in the semi-empirical Hiickel theory [26]. This first term 
includes most of the electronic shell structure effects which arise when Ts[n] 
is treated exactly (but not when Ts[n] is treated in a continuum model like 
the Thomas-Fermi approximation or the gradient expansion). 

3.4 Exchange Energy and Correlation Energy 

E×¢[n] is the sum of distinct exchange and correlation terms: 

Exc In] : Ex In] + Ec [n] , 

where [29] 

(64) 

 x[n] = IV¢¢q . ) -- (65) 

When ~min is a single Slater determinant, Eq. (65) is just the usual Fock 
integral applied to the Kohn-Sham orbitals, i.e., it differs from the Hartree- 
Fock exchange energy only to the extent that  the Kohn-Sham orbitals differ 
from the Hartree-Fock orbitals for a given system or density (in the same 
way that  T~ [n] differs from the Hartree-Fock kinetic energy). We note that 

^ r n i n  
( ~ m i n l T . . ~ _  Veel~n ) ---- Ts[n] + U[n] + Ex[n] , (66) 

and that,  in the one-electron (I?~¢ = 0) limit [9], 

E x i t ]  = - U [ n ]  ( N  = 1) . (67) 

The correlation energy is 
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E¢[n] = F[n]  - + U[n] + E×[n]}  
: @minlT_+_ V~lgr~i~) _ @mi. lT + gCe@min) . (68) 

Since @mi~ is that  wavefunction which yields density n and minimizes (T + 
Ik¢~), Eq. (68) shows that  

E¢[n] _< 0 . (69) 

Since (~min is that wavefunction which yields density n and minimizes @), 
Eq. (68) shows that E¢[n] is the sum of a positive kinetic energy piece and 
a negative potential energy piece. These pieces of Ec contribute respectively 
to the first and second terms of the virial theorem, Eq. (45). Clearly for any 
one-electron system [9] 

E¢[n] = 0 ( N  = 1) . (70) 

Eqs. (67) and (70) show that the exchange-correlation energy of a one- 
electron system simply cancels the spurious self-interaction U[n]. In the same 
way, the exchange-correlation potential cancels the spurious 

self-interaction in the Kohn-Sham potential [9] 

(fE× 
---- -u( [n] ; r )  (N -- 1) , (71) 

(in(r) 

(fEe 
- 0  ( N =  1) . (72) 

(in(r) 

Thus 
(fE×¢ 1 

lim - (N = 1) . (73) 
~--++ ~fn(r) r 

The extension of these one-electron results to spin-density functional theory 
is straightforward, since a one-electron system is fully spin-polarized. 

3.5  C o u p l i n g - C o n s t a n t  I n t e g r a t i o n  

The definitions (65) and (68) are formal ones, and do not provide much intu- 
itive or physical insight into the exchange and correlation energies, or much 
guidance for the approximation of their density functionals. These insights 
are provided by the coupling-constant integration [30-33] to be derived below. 

Let us define ~min,x as that  normalized, antisymmetric wavefunction 
which yields density n(r) and minimizes the expectation value of T + AVee, 
where we have introduced a non-negative coupling constant A. When A = 1, 
~min,x is kP rain , the interacting ground-state wavefunction for density n. When 

rain = 0, ~mi~,x is ~,~ , the non-interacting or Kohn-Sham wavefunction for 
density n. Varying A at fixed n(r) amounts to varying the external potential 
vx(r): At A = 1, vx(r)  is the true external potential, while at ), = 0 it is the 
Kohn-Sham effective potential vs(r). We normally assume a smooth, "adia- 
batic connection" between the interacting and non-interacting ground states 
as A is reduced from 1 to 0. 
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Now we write Eqs. (64), (65) and (68) as 

E×¢[~] 
min,A -- <~¢~'XlT+ Xge¢l~'m~'x> x=~- (~min'xlT+ AVe¢l~'~ ) x=o - c [ n ]  

fo a -- dA~-~<~nrnin')'IT q-/kteI~[gn rain,A> -- U[n] . (74) 

The Hellmann-Feynman theorem of section 2.4 allows us to simplify Eq. (74) 
to 

Exc[n] = d)~(~ min')~ IYeel~ tmin'k) - U [ n ]  . (75) 

Eq. (75) "looks like" a potential energy; the kinetic energy contribution to 
Exc has been subsumed by the coupling-constant integration. We should re- 
member, of course, that only A = 1 is real or physical. The Kohn-Sham system 
at A = 0, and all the intermediate values of A, are convenient mathematical 
fictions. 

To make further progress, we need to know how to evaluate the N-electron 
expectation value of a sum of one-body operators like T, or a sum of two- 
body operators like lI~. For this purpose, we introduce one-electron (Pl) and 
two-electron (P2) reduced density matrices [34]: 

Pl(r '(r,r~) ----- N Z 
G 2 . . . G N  

f d 3 r 2  . . . f d 3 r N ~ ' ( r l e t ,  r2cr2 ,  . . rNO'N)~(rcr, r2o'2,.. , r N ~ N )  , ( 7 6 )  
J J 

p2(r ' ,r)  -- N ( N -  i) 

From Eq. (20), 

Clearly also 

Z f d3r3.' f d3rNl~(r'crl'rO'2'" 
G1 ...GN 

.~ (r )  = pl (r~, ~ )  

. , r N C r N ) l  2 . 

(77) 

(78) 

d 1 0 ff-~Pl (r'a, rc 0 (79) (T>= ~ 3r- 2 0 r  
r 

<Vee> = 1 [d3r fd3r, p2(r', r) (80) 
2 j  j 

We interpret the positive number p2(r', r)d3r'd3r as the joint probability of 
finding an electron in volume element d3F at r', and an electron in d3r at 
r. By standard probability theory, this is the product of the probability of 
finding an electron in d3r (n(r)d3r) and the conditional probability of finding 
an electron in d3r ', given that there is one at r (n2(r, r')d3r'): 
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p2(r' ,r) = n(r)n2(r , r ' )  . (81) 

By arguments similar to those used in section 2.1, we interpret n2(r, r I) as 
the average density of electrons at r I, given that there is an electron at r. 
Clearly then 

fd 3rtn2(r, r') N -  1 (82) d 

For the wavefunction ~min,a, we write 

n2(r, r ') = n(r ') + nx~c(r, r ') , (83) 

an equation which defines nx¢(r,r '), the density at r ~ of the exchange- 
correlation hole [33] about an electron at r. Eqs. (5) and (83) imply that  

f d  (r, r') = - 
! A 1 (84) r nxc 

which says that,  if an electron is definitely at r, it is missing from the rest of 
the system. 

Because the Coulomb interaction 1/u is singular as u = Ir - r~l -+ 0, the 
exchange-correlation hole density has a cusp [35,34] around u = 0: 

0 f d~2u nX . 0--~ ~ xc(r, r + u) = A [n(r) + nx~c(r, r)] , (85) 
U ~ 0  

where fdT2u/(4~r) is an angular average. This cusp vanishes when A = 0, 
and also in the fully-spin-polarized and low-density limits, in which all other 

n~c(r, electrons are excluded from the position of a given electron: r) = - n ( r ) .  
We can now rewrite Uq. (75) as [331 

where 

E×¢[n] : 1 f , 3  f , 3  ,n(r)h×¢(r,r') 
] ° r J ° " F; - ' 

(86) 

f0 
1 

= d£n×c(r, r '  ) (87) fix¢ (r, r') 

is the coupling-constant averaged hole density. The exchange-correlation en- 
ergy is just the electrostatic interaction between each electron and the 
coupling-constant averaged exchange-correlation hole which surrounds it. The 
hole is created by three effects: (1) self-interaction correction, a classical effect 
which guarantees that  an electron cannot interact with itself, (2) the Pauli 
exclusion principle, which tends to keep two electrons with parallel spins 
apart in space, and (3) the Coulomb repulsion, which tends to keep any two 
electrons apart in space. Effects (1) and (2) are responsible for the exchange 
energy, which is present even at ~ = 0, while effect (3) is responsible for the 
correlation energy, and arises only for )~ ~ 0. 
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If g~min,~=0 is a single Slater determinant, as it typically is, then the one- 
and two-electron density matrices at A = 0 can be constructed explicitly from 
the Kohn-Sham spin orbitals ¢~o(r): 

* ! r d : ° ( r %  = - ) , ( 88 )  

p2~=°(r ', r) = n(r)n(r ' )  + n(r)n×(r, r') , (89) 

where 

nx(r , r ' )  = a=0 ~ n(r) 
nxc ( r , r ' ) =  - ~ - ~  [P~=0(r'cr'rcr)I2 (90) 

is the exact exchange-hole density. Eq. (90) shows that 

nx(r , r ' )  _< 0 , (91) 

so the exact exchange energy 

1 3r d3r, n(r)n×(r,r') 

is also negative, and can be written as the sum of up-spin and down-spin 
contributions: 

E × = E ~ + E x  ¢ < 0  . (93) 

Eq. (84) provides a sum rule for the exchange hole: 

d3r'n×(r, r ) = - 1  (94) l 

Eqs. (90) and (78) show that the "on-top" exchange hole density is [36] 

nx(r, r) -- n~ ( r )+  nl(r)  
n(r) ' (95) 

which is determined by just the local spin densities at position r - suggesting 
a reason why local spin density approximations work better than local density 
approximations. 

The correlation hole density is defined by 

fix¢(r,r') = nx(r , r ' )  + fi¢(r,r') , (96) 

and satisfies the sum rule 

fd3r ' f i¢(r ,  = , (97) r I ) 0 

which says that Coulomb repulsion changes the shape of the hole but not 
its integral. In fact, this repulsion typically makes the hole deeper but more 
short-ranged, with a negative on-top correlation hole density: 
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fie(r, r) < 0 .  (98) 

The positivity of nq. (77) is equivalent via nqs. (81) and (83) to the in- 
equality 

fixc(r, r') _~ -n ( r ' )  , (99) 

which asserts that the hole cannot take away electrons that weren't there 
initially. By the sum rule (97), the correlation hole density fic(r,r') must 
have positive as well as negative contributions. Moreover, unlike the exchange 
hole density n~ (r, r'), the exchange-correlation hole density nxc(r, V) can be 
positive. 

To better understand Ex¢, we can simplify Eq. (86) to the "reM-space 
analysis" [37] 

N ~ Ex~[n] = -~- du 47ru 2 (nxe(U))u ' (100) 

where 
1 darn(r ) (101) (fixc(U)) ---- N f  / ~-TrU fixe(r, r + u ) 

is the system- and spherical-average of the coupling-constant-averaged hole 
density. The sum rule of Eq. (84) becomes 

f0 ° du 4~ru2(fixe(U)) = -1  (102) @ 

As u increases from 0, (nx(U)) rises analytically like (nx (0))+O(u2), while 
(fie(u)) rises like (fie(0))+O(lul) as a consequence of the cusp of Eq. (85). Be- 
cause of the constraint of Eq. (102) and because of the factor 1/u in Eq. (100), 
Exe typically becomes more negative as the on-top hole density (fixc(U)) gets 
more negative. 

4 F o r m a l  P r o p e r t i e s  o f  F u n c t i o n a l s  

4.1 Uniform Coordinate Scaling 

The more we know of the exact properties of the density functionals Exc[n] 
and Ts[n], the better we shall understand and be able to approximate these 
functionals. We start with the behavior of the functionals under a uniform 
coordinate scaling of the density, Eq. (40). 

The Hartree electrostatic self-repulsion of the electrons is known exactly 
(Eq. (9)), and has a simple coordinate scaling: 

U[n,] = ½/da(vr)/da( r') n(vr>(Tr') 

= 7 1  darl dar'l 2 / i  j~ n(rl)n(r~)lr_~_~r~_~ _ 7U[n ] , (103) 
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where r l  = 7r and r~ = 7r'.  
Next consider the non-interacting kinetic energy of Eq. (59). Scaling all 

the wavefunctions LV in the constrained search as in Eq. (38) will scale the 
density as in Eq. (40) and scale each kinetic energy expectation value as in 
Eq. (43). Thus the constrained search for the unscaled density maps into the 
constrained search for the scaled density, and [38] 

Ts[n~] = 72 Ts[n] . (104) 

We turn now to the exchange energy of Eq. (65). By the argument of the 
m m  last paragraph, #min is the scaled version of #,~ . Since also 

Veo(Trl , . . . ,  7rN) = 7 -1 Voo(rl , . . - ,  rN) , (10 ) 

and with the help of EQ. (103), we find [38] 

Ex[-7] : 7Ex[n] • (106) 

In the high-density (7 --4 oo) limit, T,[n.r] dominates U[n.~] and Ex[n-~]. 
An example would be an ion with a fixed number of electrons N and a 
nuclear charge Z which tends to infinity; in this limit, the density and energy 
become essentially hydrogenic, and the effects of U and E× become relatively 
negligible. In the low-density (7 -+ 0) limit, U[n-y] and E×[n.y] dominate 
Ts[n ]. 

We can use coordinate scaling relations to fix the form of a local density 
approximation 

F[n] : ]d3rf(n(r)) . 
g .  

( 107) 

If F[n;~] -- AVF[n], then 

A-3/d3(Ar)f  (A3n(/~r)) = AV/d3rf(n(r)) , (108) 

or f(A3n) -- Ap+3f(n), whence 

f(n) = n 1+p/3 (109) 

For the exchange energy of Eq. (106), p = 1 so Eqs. (107) and (109) im- 
ply Eq. (49). For the non-interacting kinetic energy of Eq. (104), p : 2 so 
Eqs. (107) and (109) imply the Thomas-Fermi approximation 

T0[n] = A~/d3rn~/3(r) . (110) 

U[n] of Eq. (9) is too strongly nonlocal for any local approximation. 
While T~[n], U[n] and E×[n] have simple scalings, E¢[n] of Eq. (68) does 

not. This is because ~m$~ the wavefunction which via Eq. (55) yields the 

scaled density n~ (r) and minimizes the expectation value of ir + lye,, is not 
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the scaled wavefunction @N/2khmin(Trt,... ,TrN). The scaled wavefunction 
yields n~ (r) but minimizes the expectation value of ~b + 7tTee, and it is this 
latter expectation value which scales like 7 x under wavefunction scaling. Thus 
[39] 

E¢[n~] = 72E~/~[n] , (111) 

where E~/~[n] is the density functional for the correlation energy in a system 
for which the electron-electron interaction is not Vee but 3' -1 l)ee. 

To understand these results, let us assume that the Kohn-Sham non-inter- 
acting Hamiltonian has a non-degenerate ground state. In the high-density 
limit (3' -+ oc), ~min minimizes just (T} and reduces to ~min Now we treat ?2"v • ' v  ' 

i =1  

(112) 

as a weak perturbation [40,41] on the Kohn-Sham non-interacting Hamilto- 
nian, and find 

I(nlAI0)12 (113) 

n#O 

where the In) are the eigenfunctions of the Kohn-Sham non-interacting Hamil- 
tonian, and 10) is its ground state. Both the numerator and the denominator 
of nq. (113) scale like 72, so [42] 

lim E¢[n~] = c o n s t a n t  . (114) 

In the low-density limit, i/(min minimizes just (Vee), and Eq. (68) then 
n -  v 

shows that  [43] 

E¢[n.y] ~ 7D[n] (7 --+ 0) . (115) 

Generally, we have a scaling inequality [38] 

E¢[n~] > 7E¢[n] (7 > 1) , (116) 

Ec[nT] < TEe[n] (7 < 1) . (117) 

If we choose a density n, we can plot Ec[n7] versus 7, and compare the result 
to the straight line 7E¢[n]. These two curves will drop away from zero as 7 
increases from zero (with different initial slopes), then cross at 7 = 1. The 
convex Ec[nw] will then approach a negative constant as 7 --+ oc. 
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4.2 Loca l  L o w e r  B o u n d s  

Because of the importance of local and semilocal approximations like Eqs. (11) 
and (12), bounds on the exact functionals are especially useful when the 
bounds are themselves local functionals. 

Lieb and Thirring [44] have conjectured that Ts[n] is bounded from below 
by the Thomas-Fermi functional 

Ts[n] > T0[n] , (118) 

where T0[n] is given by Eqs. (110) with 

As = 3 (3rr2)2/3 (119) 

We have already established that 

Ex[n] > Exc[n] _> E~Cl[n] , (120) 

where the final term of Eq. (120) is the integrand E~c[n ] of the coupling- 
constant integration of Eq. (75) , 

(k~nmi-,)~ Ex~[n] = I?~¢l~m'"'~> -- U[n] , (121) 

evaluated at the upper limit A : 1. Lieb and Oxford [45] have proved that 

E~¢ =1[hI > 2.273ELDA[n] , (122) 

where E LDA[n] is the local density approximation for the exchange energy, 
Eq. (49), with 

3 (311.2)1/3 (123) Ax = -4--~ 

4.3 Spin Scaling Relations 

Spin scaling relations can be used to convert density functionals into spin- 
density functionals. 

For example, the non-interacting kinetic energy is the sum of the separate 
kinetic energies of the spin-up and spin-down electrons: 

Ts[n+, n l. ] = Ts[nt, 0] + Ts[0, n,] . (124) 

The corresponding density functional, appropriate to a spin-unpolarized sys- 
tem, is [46] 

Ts[n] : Ts[n/2, . / 2 ]  = 2Ts[n/2, 0 ] ,  (125)  

whence Ts[n/2, 0] = ½Ts[n] and Eq. (124) becomes 

(126) 
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Similarly, Eq. (93) implies [46] 

Ex[n~,nt] = 1Ex[2n?] + 1Ex[2n,] . (127) 

For example, we can start  with the local density approximations (110) and 
(49), then apply (126) and (127) to generate the corresponding local spin 
density approximations. 

Because two electrons of anti-parallel spin repel one another Coulombi- 
cally, making an important contribution to the correlation energy, there is no 
simple spin scaling relation for Ec. 

4.4 Size Consistency 

Common sense tells us that the total energy E and density n(r) for a system, 
comprised of two well-separated subsystems with energies E1 and E2 and 
densities n1(r) and n2(r), must be E = E1 + E2 and n(r) = nl( r )  + n2(r). 
Approximations which satisfy this expectation, such as the LSD of Eq. (11) 
or the GGA of Eq. (12), are properly size consistent [47]. Size consistency 
is not only a principle of physics, it is almost a principle of epistemology: 
How could we analyze or understand complex systems, if they could not be 
separated into simpler components? 

Density functionals which are not size consistent are to be avoided. An 
example is the Fermi-Amaldi [48] approximation for the exchange energy, 

EFA[n] = -U[n/N] , (128) 

where Y is given by Eq. (5), which was constructed to satisfy Eq. (67). 

4.5 Derivative Discontinuity 

In section 3, our density functionals were defined as constrained searches over 
wavefunctions. Because all wavefunctions searched have the same electron 
number, there is no way to make a number-nonconserving density variation 
Jn(r).  The functional derivatives are defined only up to an arbitrary constant, 
which has no effect on Eq. (50) when fd3rJn(r) = O. 

To complete the definition of the functional derivatives and of the chemical 
potential #, we extend the constrained search from wavefunctions to ensem- 
bles [49,50]. An ensemble or mixed state is a set of wavefunctions or pure 
states and their respective probabilities. By including wavefunctions with 
different electron numbers in the same ensemble, we can develop a density 
functional theory for non-integer particle number. Fractional particle num- 
bers can arise in an open system that  shares electrons with its environment, 
and in which the electron number fluctuates between integers. 

The upshot is that the ground-state energy E(N)  varies linearly between 
two adjacent integers, and has a derivative discontinuity at each integer. This 
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discontinuity arises in part from the exchange-correlation energy (and entirely 
so in cases for which the integer does not fall on the boundary of an electronic 
shell or subshell, e.g., for N = 6 in the carbon atom but not for N = 10 in 
the neon atom). 

By Janak's theorem [51], the highest partly-occupied Kohn-Sham eigen- 
value ~HO equals OE/ON = la, and so changes discontinuously [49, 50] at an 
integer Z: 

- I z  ( Z -  I < N < Z) (129) 
8 H O  -~- - A z  (Z < N < Z + 1) ' 

where Iz is the first ionization energy of the Z-electron system (i.e., the least 
energy needed to remove an electron from this system), and Az is the electron 
affinity of the Z-electron system (i.e., Az = Iz+I) .  If Z does not fall on the 
boundary of an electronic shell or subshell, all of the difference between - I z  
and - A z  must arise from a discontinuous jump in the exchange-correlation 
potential 6Exc/6n(r) as the electron number N crosses the integer Z. 

Since the asymptotic decay of the density of a finite system with Z elec- 
trons is controlled by Iz, we can show that the exchange-correlation potential 
tends to zero as [r[--4 cx~ [52]: 

lim 6Exc = 0 ( Z -  1 < g < Z) (130) 
Irl--r oo ~n(r) 

or more precisely 

lim ~E×c 1 - -  - ( Z - 1  < N < Z )  . (131) 
Irl~oo 6n(r) r 

As N increases through the integer Z, ~Ex~/~n(r) jumps up by a positive 
additive constant. With further increases in N above Z, this "constant" van- 
ishes, first at very large Irl and then at smaller and smaller Ir[, until it is all 
gone in the limit where N approaches the integer Z + 1 from below. 

Simple continuum approximations to E×c[n~,n,t], such as the LSD of 
Eq. (11) or the GGA of Eq. (12), miss much or all the derivative discon- 
tinuity, and can at best average over it. For example, the highest occupied 
orbital energy for a neutral atom becomes approximately -7(Izl + Az), the 
average of Eq. (129) from the electron-deficient and electron-rich sides of neu- 
trality. We must never forget, when we make these approximations, that we 
are fitting a round peg into a square hole. The areas (integrated properties) 
of a circle and a square can be matched, but their perimeters (differential 
properties) will remain stubbornly different. 

5 U n i f o r m  E l e c t r o n  G a s  

5 . 1  K i n e t i c  E n e r g y  

Simple systems play an important  paradigmatic role in science. For example, 
the hydrogen atom is a paradigm for all of atomic physics. In the same way, 
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the uniform electron gas [24] is a paradigm for solid-state physics, and also for 
density functional theory. In this system, the electron density n(r)  is uniform 
or constant over space, and thus the electron number is infinite. The negative 
charge of the electrons is neutralized by a rigid uniform positive background. 
We could imagine creating such a system by starting with a simple metal, 
regarded as a perfect crystal of valence electrons and ions, and then smearing 
out the ions to make the uniform background of positive charge. In fact, the 
simple metal  sodium is physically very much like a uniform electron gas. 

We begin by evaluating the non-interacting kinetic energy (this section) 
and exchange energy (next section) per electron for a spin-unpolarized elec- 
tron gas of uniform density n. The corresponding energies for the spin- 
polarized case can then be found from Eqs. (126) and (127). 

By symmetry, the Kohn-Sham potential vs(r) must be uniform or con- 
stant, and we take it to be zero. We impose boundary conditions within a 
cube of volume l; -+ ec, i.e., we require that the orbitals repeat from one face 
of the cube to its opposite face. (Presumably any choice of boundary condi- 
tions would give the same answer as 12 -+ oc.) The Kohn-Sham orbitals are 
then plane waves exp( ik ,  r ) / v ~ ,  with momenta  or wavevectors k and ener- 
gies k2/2.  The number of orbitals of both spins in a volume dak of wavevector 
space is 2[ld/(2rr)3]d3k, by an elementary geometrical argument [53]. 

Let N = ni; be the number of electrons in volume l;. These electrons 
occupy the N lowest Kohn-Sham spin orbitals, i.e., those with k < kF: 

= 2 o(k  - k) = v fo kF 
k 3 

N k (2~.)3 dk 4rrk 2 = 123~r2 , (132) 

where kF is called the Fermi wavevector. The Fermi wavelength 2rr/kF is the 
shortest de Broglie wavelength for the non-interacting electrons. Clearly 

n =  k~- _ 3 , (133) 
3~r 2 4~rr 3 

where we have introduced the Seitz radius rs - the radius of a sphere which 
on average contains one electron. 

The kinetic energy of an orbital is k2/2,  and the average kinetic energy 
per electron is 

2 k s 2v  k 
t s ( n ) =  ~ E 0 ( k F - k ) - ~  - N(2cr) 3Jo  dk4rrk 2 2 - 5 2 ' (134) 

k 

or 3/5 of the Fermi energy. In other notation, 

All of this kinetic energy follows from the Pauli exclusion principle, i.e., from 
the fermion character of the electron. 
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5.2 E x c h a n g e  E n e r g y  

To evaluate the exchange energy, we need the Kohn-Sham one-matrix for 
electrons of spin a, as defined in Eq. (88): 

p}=O (r + ua,  re )  = ~ e(kF - k) e x p ( - i k  - (r + u) exp(ik - r) 

k ' /9  '/Y 

1 f0k~ f 
(2~.)3 dk 4rrk 2 d~?k e x p ( - i k ,  u) - ~ 

1 ifkFdk k 2sin(ku) 
2~ 2 Jo ku 

_ k~ s i n ( k F u ) -  kFucos(kFu) (136) 
2~r 2 (k~u)  3 

The exchange hole density at distance u from an electron is, by Eq. (90), 

nx(U) = - 2  le•=°(r + u~, r~)t= , (137) 
n 

which ranges from -n /2  at u = 0 (where all other electrons of the same spin 
are excluded by the Pauli principle) to 0 (like 1/u 4) as u -+ cx). The exchange 
energy per electron is 

/7 5 ex(n) = du 27run×(u) = - kF • (138) 

In other notation, 

ex(n) = - ~ ( 3 ~ r 2 n ) l / a  = 3 (97r/4) 1/a (139) 
47r rs 

Since the self-interaction correction vanishes for the diffuse orbitals of the 
uniform gas, all of this exchange energy is due to the Pauli exclusion principle. 

5.3 C o r r e l a t i o n  E n e r g y  

Exact analytic expressions for e¢(n), the correlation energy per electron of 
the uniform gas, are known only in extreme limits. The high-density (rs --+ 0) 
limit is also the weak-coupling limit, in which 

ec(n) = c o l n r , - c l + c 2 r ,  l n r , - c a r , + . . .  (rs--+0) (140) 

from many-body perturbation theory [54]. The positive constants 
co = 0.031091 [54] and cl = 0.046644 [55] are known. Eq. (140) does not 
quite tend to a constant when rs -+ 0, as Eq. (114) would suggest, because 
the excited states of the non-interacting system lie arbitrarily close in energy 
to the ground state. 
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The low-density (rs -+ oc) limit is also the strong coupling limit in which 
the uniform fluid phase is unstable against the formation of a close-packed 
Wigner lattice of localized electrons. Because the energies of these two phases 
remain nearly degenerate as r~ --+ oe, they have the same kind of dependence 
upon rs [56]: 

do dl 
e¢(n) --+ - - -  + ~ + . . .  (rs -+ oc) . (141) 

Ts rs  

The constants do and da in Eq. (141) can be estimated from the Madelung 
electrostatic and zero-point vibrational energies of the Wigner crystal, respec- 
tively. The estimate 

9 do - - -  (142) 
10 

can be found from the electrostatic energy of a neutral spherical cell: just 
add the electrostatic self-repulsion 3/5rs of a sphere of uniform positive back- 
ground (with radius rs) to the interaction - 3 / 2 r s  between this background 

and the electron at its center. The origin of the rs  3/2 term in Eq. (141) is 
also simple: Think of the potential energy of the electron at small distance u 

1 2 from the center of the sphere as - 3 / 2 r s  + ~ku , where k is a spring constant. 
Since this potential energy must vanish for u ~ r,, we find that  k ,-~ r~ -3 and 

thus the zero-point vibrational energy is 3w/2 = 1.5v/k- /m ~ r [  3/2. 
An expression which encompasses both limits (140)and (141) is [8] 

[ 1 ] , (143) ec(n) = - 2 c o ( l + a l r ~ ) l n  1 + . , .  1/2 ~ 3 / 2 _  
ZCo(/Jlrs -t- /?2rs -t- P 3 r s  -1- /?4rs 2) 

where 
1 cl 

/71 = ~c0 exp ( -~c0 )  , (144) 

/?2 ---- 2c0/?~ . (145) 

The coefficients cq = 0.21370,/?3 = 1.6382, and ~4 = 0.49294 are found by 
fitting to accurate Quantum Monte Carlo correlation energies [57] for r~ =2, 
5, 10, 20, 50, and 100. 

The uniform electron gas is in equilibrium when the density n minimizes 
the total energy per electron, i.e., when 

0 
On [t~(n) + e×(n) + ec(n)] = 0 . (146) 

This condition is met at rs = 4.1, close to the observed valence electron 
density of sodium. At any r~, we have 

5T~ 0 
5n(r----) -- On [nG(n)] = k~ , (147) 

6E× 0 1 

S n ( r )  - 0 n  = . 
(148) 
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Eq. (143) with the parameters listed above provides a representation 
of ec(n . t ,n$)  for n? = n j, = n /2 ;  other accurate representations are also 
available [9,10]. Eq. (143) with different parameters (co = 0.015545, cl = 
0.025599, a l  = 0.20548, 133 = 3.3662,/34 = 0.62517) can represent e¢(nt ,  n~.) 
for n t = n and n+ = 0, the correlation energy per electron for a fully spin- 
polarized uniform gas. But we shall need e¢(n t ,  n j.) for arbitrary relative spin 
polarization 

( _ (n,~ - n~) (149) 
(n~ ~ n~) ' 

which ranges from 0 for an unpolarized system to +1 for a fully-spin-polarized 
system. A useful interpolation formula, based upon a study of the random 
phase approximation, is [10] 

Y(¢)/1 e c ( - , , - , )  : ec(n) + ~ ( . ) ~ .  - ¢ )  + [e~(n, 0) - e ~ ( n ) ] / ( 0 ¢  

= e¢(n) + (~¢(n)( 2 + 0((4)  , (150) 

where 
f ( ( )  = [(1 +()4/3  + ( 1 -  ()4/a _ 2] (151) 

(24/3 - 2 )  

In Eq. (150), a¢ (n) is the correlation contribution to the spin stiffness. Roughly 
a¢(n )  ~ e¢(n,  0) - ec(n), but more precisely -a~(n)  can be parametrized in 
the form of Eq. (143) (with co = 0.016887, Cl = 0.035475, ax = 0.11125, 
83 = 0.88026, f14 = 0.49671). 

For completeness, we note that the spin-scaling relations (126) and (127) 
imply that 

ex(n-f, n.t) = ex(n) [(1 + ()4/z -t- (1 - ()4/3] (152) 
2 

t~(n~, n.t) = t .(n) [(1 + ()s/3 + (1 - ()5/a] (153) 
2 

The exchange-hole density of Eq. (137) can also be spin scaled. Expressions 
for the exchange and correlation holes for arbitrary rs and ( are given in 
Ref. [58]. 

5.4 Linear Response  

We now discuss the linear response of the spin-unpolarized uniform electron 
gas to a weak, static, external potential (iv(r). This is a well-studied problem 
[59], and a practical one for the local-pseudopotential description of a simple 
metal [60]. 

Because the unperturbed system is homogeneous, we find that,  to first 
order in tiv(r), the electron density response is 

tin(r) = / d 3 ~ ' x ( I r  - r ' l ) ~ ( r ' )  (154) 
J 
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where X is a linear response function. If 

(iv(r) = (iv(q) exp(iq,  r) (155) 

is a wave of wavevector q and small amplitude (iv(q), then Eq. (154) becomes 
(in(r) = (in(q) exp(iq,  r), where 

(in(q) = x(q)Sv(q) , (156) 

and 
f 

~((q) = Jd3x  exp( - iq -  X)/~(iX]) (157) 

is the Fourier transform of ~((Ir- r'l) with respect to x = r - r ' .  (In Eq. (155), 
the real part of the complex exponential exp(ia) = cos(a) + isin(a) is un- 
derstood.) 

By the Kohn-Sham theorem, we also have 

(in(q) = )ts(q)(ivs(q) , (158) 

where 5vs(q) is the change in the Kohn-Sham effective one-electron potential 
of Eq. (62), and 

xs(q) = - k---FF(q/2kF) (159) 
71-2 

is the density response function for the non-interacting uniform electron gas. 
The Lindhard function 

1 1 - x 2 1 + x ( 1 6 0 )  
F(x ) - -  ~ + ~ l n  1 - x  

equals 1 - x2/3 - x4/15 as x --+ 0, 1/2 at x = 1, and 1/(3x 2) + 1/(15x 4) as 
x --+ oo. dF /dx  diverges logarithmically as x -+ 1. 

Besides (iv(r), the other contributions to (ivs(r) of Eq. (62) are 

(i ( (fU "~ = f d 3 r  , (fn(r') 
k ( i n ( r ) )  I " -  "'1 ' 

( (i Zxc ida,., (i Zxc (i,,(,,,). 
(i \ ( i n ( r ) ]  = (fn(r)(in(r') 

(161) 

(162) 

In other words, 

5v~(q) = (iv(q) + (in(q) - ~-7×c(q)Sn(q) , (163) 
~F 

where the coefficient of the first (in(q) is the Fourier transform of the Coulomb 
interaction 1/]r - r '  I, and the coefficient of the second (in(q) is the Fourier 
transform of 52E×c/Sn(r)Sn(r'). 

We re-write Eq. (163) as 
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where 

4~ [1 5vs(q) = 5v(q) + - G×¢(q)] 5n(q) q2 (164) 

G×¢(q) - 7×¢(q) ~ (165) 

is the so-called local-field factor. Then we insert Eq. (158) into Eq. (164) and 
find 

(~v(q) (166) 5v~(q) = Cs(q) 

where 

4~ [1 - Gxc(q)] xs(q) . (167) es(q) = 1 - - ~  

In other words, the density response function of the interacting uniform elec- 
tron gas is 

x~(q) (168) 
x ( q ) -  cs(q) 

These results are particularly simple in the long-wavelength (q -+ 0) limit, 
in which Vx¢(q) tends to a constant and 

e~(q) -~ 1 7xc (q=0)  k~ 
~kF + ~  (q -+0)  , (169) 

ks = (~_)1/2 -~ (4)1/2 (~)1/6 fl/_ 2 
1- s 

where 

(170) 

is the inverse of the Thomas-Fermi screening length - the characteristic dis- 
tance over which an external perturbation is screened out. Eqs. (166) and 
(167) show that a slowly-varying external perturbation (iv(q) is strongly 
"screened out" by the uniform electron gas, leaving only a very weak Kohn- 
Sham potential 5Vs(q). Eq. (168) shows that the response function x(q) is 
weaker than xs(q) by a factor (q/ks)  2 in the limit q --+ 0. 

In Eq. (166), cs(q) is a kind of dielectric function, but it is not the stan- 
dard dielectric function c(q) which predicts the response of the electrostatic 
potential alone: 

5v(q) + ~-~Sn(q) = (171) 
e(q) 

By inserting Eq. (156) into Eq. (171), we find 

1 47r 
= 1 + -~)c(q) (172) ~(q) 

It is only when we neglect exchange and correlation that we find the simple 
Lindhard result 
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47r 
E(q) --+ ¢s(q) -+ eL(q) = 1 - 7x~ (q )  (7×c -+ 0) . (173) 

Neglecting correlation, 7× is a numerically-tabulated function of (q/2kF) 
with the small-q expansion [61] 

5 q 73 
% ( q ) = 1 + ~  ~ + 2-~ ~ (q --+0) . (174) 

When correlation is included, %c(q) depends upon r~ as well as (q/2kF), m 
a way that  is known from Quantum Monte Carlo studies [62] of the weakly- 
perturbed uniform gas. 

The second-order change 5E in the total energy may be found from the 
Hellmann-Feynman theorem of Sect. 2.4. Replace (iv(r) by v~(r) = ASv(r) 
and 5n(r) by ASn(r), to find 

5 E = £  1 d A / d  3 rnx(r)-~vx(r)d 

= ~/d3ran(r)av(r) 
1 

= ~5n(-q)av(q)  (175) 

5.5 Clumping and Adiabatic  Connect ion 

The uniform electron gas for r~ < 30 provides a nice example of the adiabatic 
connection discussed in Sect 3.5. As the coupling constant A turns on from 
0 to 1, the ground state wavefunction evolves continuously from the Kohn- 
Sham determinant of plane waves to the ground state of interacting electrons 
in the presence of the external potential, while the density remains fixed 
(One should of course regard the infinite system as the infinite-volume limit 
of a finite chunk of uniform background neutralized by electrons ) 

The adiabatic connection between non-interacting and interacting uniform- 
density ground states could be destroyed by any tendency of the density to 
clump. A fictitious attractive interaction between electrons would yield such 
a tendency. Even in the absence of attractive interactions, clumping appears 
in the very-low-density electron gas as a charge density wave or Wigner crys- 
tallization [56,59]. Then there is probably no external potential which will 
hold the interacting system in a uniform-density ground state, but one can 
still find the energy of the uniform state by unposing density uniformity as 
a constraint on a trial interacting wavefunction. 

The uniform phase becomes unstable against a charge density wave of 
wavevector q and infinitesimal amplitude when es(q) of Eq. (167) vanishes 
[59]. This instability for q ~ 2kF arises at low density as a consequence of 
exchange and correlation. 
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Table  3. Exchange-correlation energies of atoms, in hartree. 

Atom LSD GGA Exact 
H -0.29 -0.31 -0.31 
He -1.00 -1.06 -1.09 
Li -1.69 -1.81 -1.83 
Be -2.54 -2.72 -2.76 
N -6.32 -6.73 -6.78 
Ne -11.78 -12.42 -12.50 

Table  4. Atomization energies of molecules, in eV. (1 hartree = 27.21 eV). From 
Ref. [20]. 

Molecule LSD GGA Exact 
H2 4.9 4.6 4.7 
CH4 20.0 18.2 18.2 
NH3 14.6 13.1 12.9 
H20 11.6 10.1 10.1 
CO 13.0 11.7 11.2 
02 7.6 6.2 5.2 

6 Local and Semi-Local  Approximat ions  

6.1 Local Spin Density Approximation 

The local spin density approximation (LSD) for the exchange-correlation en- 
ergy, Eq. (11), was proposed in the original work of Kohn and Sham [6], and 
has proved to be remarkably accurate, useful, and hard to improve upon. 
The generalized gradient approximation (GGA) of Eq. (12), a kind of simple 
extension of LSD, is now more widely used in quantum chemistry, but LSD 
remains the most  popular way to do electronic-structure calculations in solid 
state physics. Tables 1 and 2 provide a summary  of typical errors for LSD and 
GGA, while Tables 3 and 4 make this comparison for a few specific a toms 
and molecules. The LSD is parametrized as in Sect. 5, while the GGA is 
the non-empirical one of Perdew, Burke, and Ernzerhof [20], to be presented 
later. 

The LSD approximation to any energy component G is 

, 
GLSD [n$, (176) 

where g(nt, n$) is that  energy component  per particle in an electron gas 
with uniform spin densities n i. and n~,, and n(r)d3r  is the average number of 
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electrons in volume element d3r. Sections 5.1-5.3 provide the ingredients for 
LSD Ts LsD = To, E LsD, and E c . The functional derivative of Eq. (176) is 

~ G  LSD C9 

5ha(r) -- Ona [(n,~ + nt)g(n$, hi) ] . (177) 

By construction, LSD is exact for a uniform density, or more generally 
for a density that varies slowly over space [6]. More precisely, LSD should 
be valid when the length scale of the density variation is large in comparison 
with length scales set by the local density, such as the Fermi wavelength 
27r/kF or the screening length 1~ks. This condition is rarely satisfied in real 
electronic systems, so we must look elsewhere to understand why LSD works. 

We need to understand why LSD works, for three reasons: to justify LSD 
calculations, to understand the physics, and to develop improved density 
functional approximations. Thus we will start with the good news about 
LSD, proceed to the mixed good/bad news, and close with the bad news. 

LSD has many correct formal features. It is exact for uniform densities and 
nearly-exact for slowly-varying ones, a feature that makes LSD well suited 
at least to the description of the crystalline simple metals. It satisfies the 
inequalities Ex < 0 (Eq. (93)) and Ec < 0 (Eq. (69)), the correct uniform co- 
ordinate scaling of E× (Eq. (106)), the correct spin scaling of Ex (Eq. (127)), 
the correct coordinate scaling for E¢ (Eqs. (111), (116), (117)), the correct 
low-density behavior of E~ (Eq. (115)), and the correct Lieb-Oxford bound 
on E×~ (Eqs. (120) and (122)). LSD is properly size-consistent (Sect. 4.4). 

LSD provides a surprisingly good account of the linear response of the 
spin-unpolarized uniform electron gas (Sect. 5.4). Since 

52E~¢ sD 02 
5n(r)Sn(r') -- 5 ( r -  r ') [nexc(n)]an 2 , (178) 

where 5(r - r') is the Dirac delta function, we find 

7×LSD(q)= 1 k2 c~2_ 
7r On 2[nee(n)] , (179) 

a constant independent of q, which must be the exact q ~ 0 or slowly-varying 
limit of 7×¢(q)- Figure 1 of Ref. [20] shows that the "exact" 7×c(q) from a 
Quantum Monte Carlo calculation [62] for rs = 4 is remarkably close to the 

LSD prediction for q <~ 2kF. The same is true over the whole valence-electron 
density range 2 <~ rs ~< 5, and results from a strong cancellation between the 
nonlocalities of exchange and correlation. Indeed the exact result for exchange 
(neglecting correlation), Eq. (174), is strongly q-dependent or nonlocal. The 

displayed terms of Eq. (174) suffice for q < 2kF. 
Powerful reasons for the success of LSD are provided by the coupling 

constant integration of Sect. 3.5. Comparison of Eqs. (86) and (11) reveals 
that  the LSD approximations for the exchange and correlation holes of an 
inhomogeneous system are 
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LSD~ n x (r, r ') = nunif(nT(r), n$(r); Ir - r'l) , (180) 

nLSD(r, r') = ncUnif(n.[-(y), n,(r);  ]r - r ' D , (181) 

where n×cunif tnt,t ha; u) is the hole in an electron gas with uniform spin densities 
n t and ha. Since the uniform gas is a possible physical system, Eqs. (180) and 
(181) obey the exact constraints of Eqs. (91) (negativity of n×), (94) (sum 
rule on nx), (95), (97) (sum rule on 5c), (98), and (85) (cusp condition). 

By Eq. (95), the LSD on-top exchange hole n~SD(r, r) is exact, at least 
when the Kohn-Sham wavefunction is a single Slater determinant. The LSD 
on-top correlation hole n¢-LSD'(r, r) is not exact [63] (except in the high-density, 
low-density, fully spin-polarized, or slowly-varying limit), but it is often quite 
realistic [64]. By Eq. (85), its cusp is then also realistic. 

Because it satisfies all these constraints, the LSD model for the system-, 
spherically-, and coupling-const ant-averaged hole of Eq. (101), 

-LSD N / d a r n  )n (n , (r ) ,n , (r ) ;u) ,  (182) 

can be very physical. Moreover, the system average in Eq. (182) "unweights" 
regions of space where LSD is expected to be least reliable, such as near a 
nucleus or in the evanescent tail of the electron density [65,64]. 

Since correlation makes (fixc(U -- 0)) deeper, and thus by Eq. (102) makes 
(fi×¢(u)) more short-ranged, Ex¢ can be "more local" than either Ex or Ec. 
In other words, LSD often benefits from a cancellation of errors between 
exchange and correlation. 

Mixed good and bad news about LSD is the fact that self-consistent 
LSD calculations can break exact spin symmetries. As an example, consider 
"stretched H2", the hydrogen molecule (N = 2) with a very large separation 
between the two nuclei. The exact ground state is a spin singlet (5' = 0), 
with nl.(r ) = nt(r)  = n(r)/2.  But the LSD ground state localizes all of the 
spin-up density on one of the nuclei, and all of the spin-down density on the 
other. Although (or rather because) the LSD spin densities are wrong, the 
LSD total energy is correctly the sum of the energies of two isolated hydro- 
gen atoms, so this symmetry breaking is by no means entirely a bad thing 
[66,67]. The self-consistent LSD on-top hole density (fixc(0)) = - ( n )  is also 
right: Heitler-London correlation ensures that  two electrons are never found 
near one another, or on the same nucleus at the same time. 

Finally, we present the bad news about LSD: (1) LSD does not incorporate 
known inhomogeneity or gradient corrections to the exchange-correlation hole 
near the electron (Sect. 6.2) (2) It does not satisfy the high-density correla- 
tion scaling requirement of Eq. (114), but shows a In 7 divergence associated 
with the In rs term of Eq. (140). (3) LSD is not exact in the one-electron limit, 
i.e., does not satisfy Eqs. (67), and (70)- (73). Although the "self-interaction 
error" is small for the exchange-correlation energy, it is more substantial for 
the exchange-correlation potential and orbital eigenvalues. (4) As a "con- 
t inuum approximation", based as it is on the uniform electron gas and its 
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continuous one-electron energy spectrum, LSD misses the derivative discon- 
tinuity of Sect. 4.5. Effectively, LSD averages over the discontinuity, so its 
highest occupied orbital energy for a Z-electron system is not Eq. (129) but 
e H° ~ - ( I z  + A z ) / 2 .  A second consequence is that  LSD predicts an incorrect 
dissociation of a hetero-nuclear molecule or solid to fractionally charged frag- 
ments. (In LSD calculations of atomization energies, the dissociation products 
are constrained to be neutral atoms, and not these unphysical fragments.) 
(5) LSD does not guarantee satisfaction of Eq. (99), an inherently nonlocal 
constraint. 

The G G A  to be derived in Sect. 6.4 will preserve all the good or mixed 
features of LSD listed above, while eliminating bad features (t)  and (2) but 
not (3) - (5). Elimination of (3) - (5) will probably require the construction 
of Ex¢[nl. , n,] from the Kohn-Sham orbitals (which are themselves highly- 
nonlocal functionals of the density). For example, the self-interaction correc- 
tion [9,68] to LSD eliminates most of the bad features (3) and (4), but not 
in an entirely satisfactory way. 

6.2 G r a d i e n t  Expansion 

Gradient  expansions [6,69], which offer systematic corrections to LSD for 
electron densities that  vary slowly over space, might appear to be the natural  
next step beyond LSD. As we shall see, they are not; understanding why not 
will light the pa th  to the generalized gradient approximations of Sect. 6.3. 

As a first measure of inhomogeneity, we define the reduced density gradi- 
ent 

I w l  I w l  3 ( 4 1/3 
- 2kF  2(a=)1/3 4/3 - 2 IW I , (18a) 

which measures how fast and how much the density varies on the scale of the 
local Fermi wavelength 27¢/kF. For the energy of an atom, molecule, or solid, 

the range 0 < s < 1 is very important .  The range 1 < < ~ s ~ 3 is somewhat  
important ,  more so in atoms than in solids, while s > 3 (as in the exponential 
tail of the density) is unimpor tant  [70,71]. 

Other measures of density inhomogeneity, such as p = X72n/(2kF)2n, are 
also possible. Note that  s and p are small not only for a slow density variation 
but also for a density variation of small amplitude (as in Sect. 5.4). The 
slowly-varying limit is one in which p / s  is also small [6]. 

Under the uniform density scaling of Eq. (40), s(r) --+ sw (r) = s(Tr). The 
functionals T~[n] and E×[n] must  scale as in Eqs. (104) and (106), so their 
gradient expansions are 

Ts[n] = As fd3rnh /3[1  + as  2 + • .] , 

Ex[ ] = A × / d 3 r n 4 / z [ a  + 2 + . .] , 

(184) 

(185) 
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Because there is no special direction in the uniform electron gas, there can 
be no term linear in 27n. Moreover, terms linear in ~72n can be recast as s 2 
terms, since 

fdarf(n)V2n : -/d3r (~n) ,~Tn,2 (186) 

via integration by parts. Neglecting the dotted terms in Eqs. (184) and (185), 
which are fourth or higher-order in V, amounts to the second-order gradient 
expansion, which we call the gradient expansion approximation (GEA). 

Correlation introduces a second length scale, the screening length i/ks, 
and thus another reduced density gradient 

_ _ _ _  s (187) 

In the high-density (r~ --~ 0) limit, the screening length (1/k~ 1/2~ ,-~rs ] is the 
only important length scale for the correlation hole. 

The gradient expansion of the correlation energy is 

Ec[n] = / d 3 r n  [ec(n) + ~(n)~ 2 + .  ] (188) 

While ec(n) does not quite approach a constant as n -+ oc, fl(n) does [69]. 
While the form of the gradient expansion is easy to guess, the coefficients 

can only be calculated by hard work. Start with the uniform electron gas, in 
either its non-interacting (T~,Ex) or interacting (E¢) ground state, and apply 
a weak external perturbation (fVs (q) exp(iq.r) or (iv(q) exp(iq.r), respectively. 
Find the linear response (in(q) of the density, and the second-order response 
gG of the energy component G of interest. Use the linear response of the 
density (as in Eqs. (157) or (156)) to express (fG entirely in terms of (in(q). 
Finally, expand (fG in powers of q2, observing that I~Tnl 2 ~ q21(in(q)]2, and 
extract the gradient coefficient. 

In this way, Kirzhnits [72] found the gradient coefficient for T~, 

5 
= - -  (189) 

27 

(which respects the conjectured bound of Eq. (118)), Sham [73] found the 
coefficient of E×, 

7 
~ S h a m  ---- - -  , (190) 

81 
and Ma and Brueckner [69] found the high-density limit of/3(n): 

/~MB = 0.066725 . (191) 

The weak density dependence of ~(n) is also known [74], as is its spin- 
dependence [75]. Neglecting small x7( contributions, the gradient coefficients 
(coefficients of ]Vn]2/n 4/3) for both exchange and correlation at arbitrary 
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relative spin polarization ff are found from those for ~ = 0 through multipli- 
cation by [76] 

1 ¢(~) = ~ [(1 + £)2/3 + ( 1 _  ()2/3] (192) 

For exchange, this is easily verified by applying the spin-scaling relation of 
Eq. (127) to Eqs. (185) and (183). 

There is another interesting similarity between the gradient coefficients 
for exchange and correlation. Generalize the definition of t (Eq. (187)) to 

t -  2¢ksn -- , t/-----~ " 
¢prs 

Then 

where 

flMB¢3nt ~ = # C × ¢ n  4 /3  s 2 , (194) 

7~ 2 
g = flMB-- 3- = 0.21951 . (195) 

Sham's derivation [73] of Eq. (190) starts with a screened Coulomb in- 
teraction ( l / u ) e x p ( - g u ) ,  and takes the limit ~ --~ 0 at the end of the cal- 
culation. Antoniewicz and Kleinman [77] showed that the correct gradient 
coefficient for the unscreened Coulomb interaction is not #Sh~m but 

10 
ttAK = ~ . (196) 

It is believed [78] that  a similar order-of limits problem exists for g, in such 
a way that  the combination of Sham's exchange coefficient with the Ma- 
Brueckner [69] correlation coefficient yields the correct gradient expansion of 
Ex¢ in the slowly-varying high-density limit. 

Numerical tests of these gradient expansions for atoms show that the 
second-order gradient term provides a useful correction to the Thomas-Fermi 
or local density approximation for Ts, and a modestly useful correction to 
the local density approximation for E×, but seriously worsens the local spin 
density results for E¢ and Ex¢. In fact, the GEA correlation energies are 
positive! The latter fact was pointed out in the original work of Ma and 
Brueckner [69], who suggested the first generalized gradient approximation 
as a remedy. 

The local spin density approximation to E×¢, which is the leading term of 
the gradient expansion, provides rather realistic results for atoms, molecules, 
and solids. But the second-order term, which is the next systematic correction 
for slowly-varying densities, makes E×¢ worse. 

There are two answers to the seeming paradox of the previous paragraph. 
The first is that  realistic electron densities are not very close to the slowly- 
varying limit (s << 1, p/s << 1, t << 1, etc.). The second is this: The LSD 
approximation to the exchange-correlation hole is the hole of a possible phys- 
ical system, the uniform electron gas, and so satisfies many exact constraints, 
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as discussed in Sect. 6.1. The second-order gradient expansion or GEA ap- 
proximation to the hole is not, and does not. 

The second-order gradient expansion or GEA models are known for both 
the exchange hole [12,13] n×(r , r  + u) and the correlation hole tic(r, r + u) 
[79]. They appear to be more realistic than the corresponding LSD models 
at small u, but far less realistic at large u, where several spurious features 
appear: nx (r, r+U)GEA has an undamped cos(2kFu) oscillation which violates 
the negativity constraint of Eq. (91), and integrates to -1 (Eq. (94)) only with 
the help of a convergence factor exp(-~u)  (n --+ 0). tic(r, r + U)GEA has a 
positive u -4 tail, and integrates not to zero (Eq. (97)) but to a positive 
number ~ s 2. These spurious large-u behaviors are sampled by the long 
range of the Coulomb interaction 1/u, leading to unsatisfactory energies for 
real systems. 

The gradient expansion for the exchange hole density is known [80] to 
third order in V, and suggests the following interpretation of the gradient 
expansion: When the density does not vary too rapidly over space (e.g., in 
the weak-pseudopotential description of a simple metal), the addition of each 
successive order of the gradient expansion improves the description of the hole 
at small u while worsening it at large u. The bad large-u behavior thwarts 
our expectation that  the hole will remain normalized to each order in V. 

The non-interacting kinetic energy Ts does not sample the spurious large- 
u part of the gradient expansion, so its gradient expansion (Eqs. (184) and 
(189)) works reasonably well even for realistic electron densities. In fact, we 
can use Eq. (79) to show that  

~ - ~ [ d  1 0  0 x-0 
Ts[n] : ~--~ .J  3r 2 Or " ~rr #1- (r'cr, r~r) (197) 

F I e F  O" - -  

samples only the small-u part of the gradient expansion of the Kohn-Sham 
one-electron reduced density matrix, while E×[n] of Eqs. (90) and (92) also 
samples large values of u. The GEA for Ts[n] is, in a sense, its own GGA [81]. 
Moreover, the sixth-order gradient expansion of Ts is also known: it diverges 
for finite systems, but provides accurate monovacancy formation energies for 
jellium [82]. 

The GEA form of Eqs. (184), (185), and (188) is a special case of the 
GGA form of Eq. (12). To find the functional derivative, note that  

= ./d3r~f(n?, n$, ~7n?, ~n~) ~F 

= ~ - - ~ / d a r ~ n ~ ( r )  . (198) 
(7 

Integration by parts gives 
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5F _ cO s V .  a S  (199) 
5n~(r) 0n~ (r) OVn~ (r) ' 

For example, the functional derivative of the gradient term in the spin-unpola- 
rized high-density limit is 

f d  [Un(r)[2 -- [~ [xyn(r)[2 ~2n] ' 
5 3 r C x c  - -  Cxc 

(in(r) n413 n713 2 n---~5/3 J 
(200) ) 

which involves second as well as first derivatives of the density. 
The GEA for the linear response function 7xc(q) of Eq. (163) is found by 

inserting n(r) = n + 5n(q)exp( iq .  r) into Eq. (199) and linearizing in ~n(q): 

GEA,  , LSD 247r(3w2)1/3Cx c q (201) 7xc (q) = 7×c - 

For example, the Antoniewicz-Kleinman gradient coefficient [77] for exchange 
of Eq. (196), inserted into Eqs. (200) and (201), yields the q2 term of Eq. (174). 

6.3 History of  Several Generalized Gradient Approximations  

In 1968, Ma and Brueckner [69] derived the second-order gradient expansion 
for the correlation energy in the high-density limit, Eqs. (188) and (191). 
In numerical tests, they found that it led to improperly positive correlation 
energies for atoms, because of the large size of the positive gradient term. As 
a remedy, they proposed the first GGA, 

/ d  [ ~MBt2 ] -v (202) EMB[n] = 3rnec(n) 1 unec(n) ' 

where u ~-, 0.32 was fitted to known correlation energies. Eq. (202) reduces 
to Eqs. (188) and (191) in the slowly-varying (t --+ 0) limit, but provides 
a strictly negative "energy density" which tends to zero as t -+ co. In this 
respect, it is strikingly like the nonempirical GGA's that were developed 
in 1991 or later, differing from them mainly in the presence of an empirical 
parameter, the absence of a spin-density generalization, and a less satisfactory 
high-density limit. 

Under the uniform scaling of Eq. (40), n(r) -+ nT(r), we find rs(r) --+ 
7 - 1 r s ( ~ r ) ,  ~ ( r )  --)- ~(~r), s(r) -+ s(Tr), and t(r) -+ "71/2t(Tr). Thus EMB[nc i. "YJ ] 

tends to EcLSD[nT] as 7 ~ Oo, and not to a negative constant as required by 
Eq. (114). 

In 1980, Langreth and Perdew [83] explained the failure of the second- 
order gradient expansion (GEA) for E¢. They made a complete wavevector 
analysis of Exc, i.e., they replaced the Coulomb interaction 1/u in Eq. (100) 
by its Fourier transform and found 

N f o o  4zrk2 4zr 
Exc[n] = T J0 dk-=-~<fi~¢(k)> U ~ ; ~  , (203) 
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where /? (fi×¢(k)) = du 4~ru2(fi×¢(u)) sin(ku) (204) 
ku 

is the Fourier transform of the system- and spherically-averaged exchange- 
correlation hole. In Eq. (203), E×¢ is decomposed into contributions from 
dynamic density fluctuations of various wavevectors k. 

The sum rule of Eq. (102) should emerge from Eq. (204) in the k --+ 0 
limit (since sin(x)/x --+ 1 as x --~ 0), and does so for the exchange energy at 
the GEA level. But the k --+ 0 limit of fiGEA(k) turns out to be a positive 
number proportional to t 2, and not zero. The reason seems to be that  the 
GEA correlation hole is only a truncated expansion, and not the exact hole 
for any physical system, so it can and does violate the sum rule. 

Langreth and Mehl [11] (1983) proposed a GGA based upon the wavevec- 
tot  analysis of Eq. (203). They introduced a sharp cutoff of the spurious 
small-k contributions to EGEA: all contributions were set to zero for k < 
k¢ = I l V n / n l ,  where f ~ 0.15 is only semi-empirical since f ~ 1/6 was 
estimated theoretically. Extension of the Langreth-Mehl E GGA beyond the 
random phase approximation was made by Perdew [14] in 1986. 

The errors of the GEA for the exchange energy are best revealed in real 
space (Eq. (100)) i not in wavevector space (Eq. (203)). In 1985, Perdew [12] 
showed that  the GEA for the exchange hole density nx(r, r + u) contains a 
spurious undamped cos(2kFu) oscillation as u --+ ~ ,  which violates the neg- 
ativity constraint of Eq. (91) and respects the sum rule of Eq. (94) only with 
the help of a convergence factor (e.g., exp ( -~u )  as ~ --~ 0). This suggested 
that  the required cutoffs should be done in real space, not in wavevector 
space. The GEA hole density n× GEA, tr, r + u) was replaced by zero for all u 
where ,,×-GEA was positive, and for all u > u×(r) where the cutoff radius Ux(r) 
was chosen to recover Eq. (94). Eq. (92) then provided a numerically-defined 
GGA for E×, which turned out to be more accurate than either LSD or GEA. 
In 1986, Perdew and Wang [13] simplified this GGA in two ways: (1) They re- 
placed n~EA(r, r +  u), which depends upon both first and second derivatives 
of n(r) ,  by - GEA, n× tr, r + u), an equivalent expression found through integration 
by parts, which depends only upon Vn(r) .  (2) The resulting numerical GGA 
has the form 

ExGGA[n] = dx /d3rn4/3F×(s) , (205) 

which scales properly as in Eq. (106). The function F×(s) was plotted and 
fitted by an analytic form. The spin-scaling relation (127) was used to gener- 
ate a spin-density generalization. Perdew and Wang [13] also coined the term 
"generalized gradient approximation". 

A parallel but more empirical line of GGA development arose in quantum 
chemistry around 1986. Becke [15, 16] showed that a GGA for Ex could be 
constructed with the help of one or two parameters fitted to exchange energies 
of atoms, and demonstrated numerically that  these functionals could greatly 
reduce the LSD overestimate of atomization energies of molecules. Lee, Yang, 
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and Parr [17] transformed the Colle-Salvetti [84] expression for the correlation 
energy from a functional of the Kohn-Sham one-particle density matrix into 
a functional of the density. This functional contains one empirical parameter 
and works well in conjunction with Becke [16] exchange for many atoms and 
molecules, Mthough it underestimates the correlation energy of the uniform 
electron gas by about a factor of two at valence-electron densities. 

The real-space cutoff of the GEA hole provides a powerful nonempirical 
way to construct GGA's. Since exchange and correlation should be treated 
in a balanced way, there was a need to extend the 1986 real-space cutoff 
construction [13] from exchange to correlation with the help of a second 
cutoff radius uc(r) chosen to satisfy Eq. (97). Without accurate formulas 
for the correlation hole of the uniform electron gas, this extension had to 
wait until 1991, when it led to the Perdew-Wang 1991 (PW91) [18,79] GGA 
for Ext. For most practical purposes, PW91 is equivalent to the Perdew- 
Burke-Ernzerhof [20,21] (PBE) "GGA made simple", which will be derived, 
presented, and discussed in the next two sections. 

6.4 C o n s t r u c t i o n  o f  a " G G A  M a d e  S i m p l e "  

The PW91 GGA and its construction [18,79] are simple in principle, but 
complicated in practice by a mass of detail. In 1996, Perdew, Burke and 
Ernzerhof [20, 21] (PBE) showed how to construct essentially the same GGA 
in a much simpler form and with a much simpler derivation. 

Ideally, an approximate density functional E×¢[nt, n4. ] should have all of 
the following features: (1) a non-empirical derivation, since the principles of 
quantum mechanics are well-known and sufficient; (2) universality, since in 
principle one functional should work for diverse systems (atoms, molecules, 
solids) with different bonding characters (covalent, ionic, metallic, hydrogen, 
and van der Waals); (3) simplicity, since this is our only hope for intuitive 
understanding and our best hope for practical calculation; and (4) accuracy 
enough to be useful in calculations for real systems. 

The LSD of Eq. (11) and the non-empirical GGA of Eq. (12) nicely bal- 
ance these desiderata. Both are exact only for the electron gas of uniform 
density, and represent controlled extrapolations away from the slowly-varying 
limit (unlike the GEA of Sect. 6.2, which is an uncontrolled extrapolation). 
LSD is a controlled extrapolation because, even when applied to a density 
that  varies rapidly over space, it preserves many features of the exact E×¢, 
as discussed in Sect. 6.1. LSD has worked well in solid state applications for 
thirty years. 

Our conservative philosophy of GGA construction is to try to retain all 
the correct features of LSD, while adding others. In particular, we retain the 
correct uniform-gas limit, for two reasons: (1) This is the only limit in which 
the restricted GGA form can be exact. (2) Nature's data  set includes the 
crystalline simple metals like Na and A1. The success of the stabilized jellium 
model [85] reaffirms that  the valence electrons in these systems are correlated 
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very much as in a uniform gas. Among the welter of possible conditions which 
could be imposed to construct a GGA, the most natural and important  are 
those respected by LSD or by the real-space cutoff construction of PW91, 
and these are the conditions chosen in the PBE derivation [20] below. The 
resulting GGA is one in which all parameters (other than those in LSD) are 
fundamental  constants. 

We start by writing the correlation energy in the form 

EGGArnc t t, n~] = Sd3rn[ec(rs,¢) + g(r~, ¢,t)] , (206) 

where the local density parameters r~ and ¢ are defined in Eqs. (133) and 
(149), and the reduced density gradient t in Eq. (193). The small-t behav- 
ior of nH should be given by the left-hand side of Eq. (194), which emerges 
naturally from the real-space cutoff construction of PW91 [79]. In the oppo- 
site or t -+ 0¢ limit, we expect that H -+ -ec( rs ,¢) ,  the correlation energy 
per electron of the uniform gas, as it does in the PW91 construction or in 
the Ma-Brueckner GGA of Eq. (202). Finally, under the uniform scaling of 
Eq. (40) to the high-density (7 --+ oc) limit, Eq. (206) should tend to a nega- 
tive constant, as in Eq. (114) or in the numerically-constructed PWgl .  This 
means that  H must cancel the logarithmic singularity of e~ (Eq. (140)) in 
this limit. 

A simple function which meets these expectations is 

1+" •]} 
co 1 + At 2 + A2t 4 

where ¢ is given by Eq. (192) and 

~MB 1 
A - -  ' 

co exp [-e¢(rs, ( ) /c0¢ 3] - 1 

We now check the required limits: 

t----~0: H-+c°¢31n{  l +  flM--~Bt2~co J 

---)- flMB(~3t 2 . 

, (207) 

(208) 

(209) 

flMB "~ 
t - + o c :  H - + c 0 ¢ 3 t n  1 +  coAJ 

+co¢31n{exp[ -<~(r~'(~)]c-~-~5 j }  

• 

rs -+ 0 at fixed s: H -+ c0¢31nt 2 -~ -c0¢31nrs  . 

To a good approximation, Eq. (140) can be generalized to 

(210) 

(211) 



Density Functionals for Non-Relativistic Coulomb Systems 51 

¢) = ¢ [co in  +...] , ( 2 1 2 )  

which cancels the log singularity of Eq. (211). 
Under uniform density scaling to the high-density limit, we find 

7 ~ ( x ) :  E?GA[n-~] ~ - - c 0  3rn¢3ln 1 +  XS2/¢2+(Xs2/¢2) 2 

(where s is defined by Eq. (183)), a negative constant as required by Eq. (114), 
with 

(3~.2- ~ ~/3 3Mn exp(--cllco) . (214) 
~:= \ 1 6 }  co 

For a two-electron ion of nuclear charge Z in the limit Z -+ ~ Eq. (213) 
is -0 .0479 hartree and the exact value is -0.0467. Realistic results from 
Eq. (213) in the Z --+ oo limit have also be found [86] for ions with 3, 9, 10, 
and 11 electrons. 

Now we turn to the construction of a GGA for the exchange energy. 
Because of the spin-scaling relation (127), we only need to construct EaxaA[n], 
which must be of the form of Eq. (205). To recover the good LSD description 
of the linear response of the uniform gas (Sect. 5.4), we choose the gradient 
coefficient for exchange to cancel that for correlation, i.e., we take advantage 
of Eq. (194) to write 

s - +  0 :  F x ( S )  = 1 + . ( 2 1 5 )  

Then the gradient coefficients for exchange and correlation will cancel for all 
rs and (,  apart from small V(  contributions to _×R GGA, as discussed in the 
next section. 

The value o f #  of Eq. (195) is 1.78 times bigger than # n z  of Eq. (196), the 
proper gradient coefficient for exchange in the slowly-varying limit. But this 
choice can be justified in two other ways as well: (a) It provides a decent fit 
to the results of the reM-space cutoff construction [79] of the PW91 exchange 
energy, which does not recover YAK in the slowly-varying limit. (b) It pro- 
vides a reasonable emulation of the exact-exchange linear response function 

of Eq. (174) over the important  range of 0 < q/2kF <~ 1 (but not of course in 
the limit q --+ 0, where #nZ is needed). 

Finally, we want to satisfy the Lieb-Oxford bound of Eqs. (120) and 
(122), which LSD respects. We can achieve this, and also recover the limit of 
Eq. (215), with the simple form 

( 2 1 6 )  F~(s) = 1+ ~ (1 + ps21~) ' 

where ~ is a constant less than or equal to 0.804. Taking ~ = 0.804 gives a 
GGA which is virtually identical to PW91 over the range of densities and 
reduced density gradients important  in most real systems. We shall complete 
the discussion of this paragraph in the next section. 
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6.5 GGA Nonlocality: Its Character, Origins, and Effects 

A useful way to visualize and think about gradient-corrected nonlocality, or 
to compare one GGA with another, is to write [19,87] 

/ d  ( ~ )  r~GGAr 3rn F×c(r,, (, s) , (217) ~x¢ Lnt, nj.] ,~, 

where c = (3/47r)(9r/4) 1/3 and -c / r ,  = ex(rs, ~ = 0) is the exchange energy 
per electron of a spin-unpolarized uniform electron gas. The enhancement fac- 
tor F×¢(rs, ~, s) shows the effects of correlation (through its rs dependence), 
spin polarization (if), and inhomogeneity or nonlocality (s). F×¢ is the ana- 
log of 3a/2 in Slater's X a  method [88], so its variation is bounded and 
plotable. Figure 1 shows F×¢(rs, ff = 0, s), the enhancement factor for a spin- 
unpolarized system. Figure 2 shows Fxc(rs, ~ = 1, s) - Fxc(rs, ~ = 0, s), the 
enhancement factor for the spin polarization energy. (Roughly, Fx¢(r~, ~, s) ~., 
Fxc(rs, ~ = 0, s) + ~2[Fxc(rs, t = 1, s) - F×c(rs, ff = 0, s)]). The nonlocality is 
the s-dependence, and 

FL2D(rs,¢,S) = Fxc(rs,(,s = 0) (218) 

is visualized as a set of horizontal straight lines coinciding with the GGA 
curves in the limit s --+ 0. 

Clearly, the correlation energy of Eq. (206) can be written in the form of 
Eq. (217). To get the exchange energy into this form, apply the spin-scaling 
relation (127) to Eq. (205), then drop small Vs contributions to find 

1( i  q= (~)4/3Fx (s / (1  q_ (~)1/3)q_ i ( 1 -  ~)4/3Fx ( s / ( i _~ ) I / 3 )  &(¢, s) = 

= ~ ( l + f f ) 4 / a + ( 1 - ~ ) 4 / 3  + # ¢ s  2 + . . .  (219) 

Now 

where 

;,  s) = Fx(;, ,) + &(r , ,  ¢, , ) ,  (220) 

lim Fc(rs, if, s) = 0 (221) 
ra'-~0 

by Eqs. (106) and (114). Thus the rs = 0 or high-density-limit curve in each 
figure is the exchange-only enhancement factor. Clearly Fx > 0, • > 0, and 
Fx(~ = 0, s = 0) = 1 by definition. 

The Lieb-Oxford bound of Eq. (122) will be satisfied for all densities n(r) 
if and only if 

Fx¢(r,, ( ,  s) >_ 2.273 . (222) 

For the PBE GGA of Eqs. (206) and (216), this requires that 

2U3F×(s/21/3) <_ 2.273 , (223) 
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Fxc(r,, ¢ = o, ~) 
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Fig. 1. The enhancment factor F×c of Eq. (217) for the GGA of Perdew, Burke, 
and Ernzerhof [20], as a function of the reduced density gradient s of Eq. (183), 
for ¢ = 0. The local density parameter rs and the relative spin polarization ~ are 
defined in Eqs. (133) and (149), respectively. 

o r  

_< 2 . 2 7 3 / 2 1 / 3 -  1 = 0.804 , (224) 

as s ta ted in Sect. 6.4. 

There  is much to be seen and explained [21] in Eq. (217) and Figs. 1 and 
2. However, the main  quali tat ive features are simply stated: W h e n  we make a 
density variat ion in which rs decreases, ( increases, or s increases everywhere, 
we find tha t  IE×I increases and {Ec/E,, I decreases. 

To unders tand  this pat tern  [21], we note tha t  the second-order gradient  
expansion for the non-interact ing kinetic energy Ts[n$, n~,], which is a rguably  
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Fxc(r~, ¢ = 1, 8) - F,c(r~,  ¢ = 0, 8) 
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Fig. 2. Same as Fig. 1, but for the difference between the fully spin-polarized (ff = 1) 
and unpolarized (ff = 0) enhancement factors. 

its own GGA [81], can be written as 

f d  3 (~)~ /3  a(~,  s) (225) TGGA[nt, n~] = 3rn 10 rs 2 

1 

using approximate spin scaling (Eq. (126) plus neglect of ~ contributions). 
Eqs. (225) and (226) respect Eq. (104) and confirm our intuition based upon 
the Pauli exclusion and uncertainty principles: Under a density variation 
in which rs decreases, C increases, or s increases everywhere, we find that 
Ts[n~, n$] increases. 

The first effect of such an increase in Ts is an increase in [Ex[. Ts and [Ex[ 
are "conjoint" [89], in the sense that both can be constructed from the occu- 
pied Kohn-Sham orbitals (Eqs. (7), (88), (90) and (92)). With more kinetic 
energy, these occupied orbitals will have shorter de Broglie wavelengths. By 
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the uncertainty principle, they can then dig a more short-ranged and deeper 
exchange hole with a more negative exchange energy. Thus exchange turns 
on when we decrease rs, increase (,  or increase s. 

The second effect of such an increase in To is to strengthen the Kohn-Sham 
Hamil tonian which holds non-interacting electrons at the spin densities n t ( r  ) 
and n$(r). This makes the electron-electron repulsion of Eq. (112) a relatively 
weaker per turbat ion on the Kohn-Sham problem, and so reduces the ratio 
IEc/E~ I. Thus correlation turns off relative to exchange when we decrease r~, 
increase (,  or increase s. 

We note in particular that  F×(r~, ¢, s) increases while Fc(r~, ¢, s) decreases 
with increasing s. The nonlocalities of exchange and correlation are opposite, 

and tend to cancel for valence-electron densities (1 < rs < 10) in the range 

0 < s < 1. The same remarkable cancellation occurs [62,21] in the linear 
LSD response function for the uniform gas of Eq. (163), i.e., %c(q) ~ 7xc (q) = 

%~(q = 0) for 0 _< q/2kF < 1. 
The core electrons in any system, and the valence electrons in solids, 

sample primari ly the range 0 < s < 1. The high-density core electrons see 
a strong, exchange-like nonloeality of E×¢ which provides an impor tant  cor- 
rection to the LSD total  energy. But the valence electrons in solids see an 
almost-complete cancellation between the nonlocalities of exchange and cor- 
relation. This helps to explain why LSD has been so successful in solid state 
physics, and why the small residue of GGA nonlocality in solids does not 
provide a universally-better description than LSD. 

The valence electrons in a toms and molecules see 0 < s < oo, when s 
diverges in the exponential tail of the density, but the energetically-important 

range is 0 < s < 3 [70,71]. Figs. 1 and 2 show that  GGA nonlocality is 
impor tant  in this range, so GGA is almost-always better than LSD for a toms 
and molecules. 

For r, < 10, the residual GGA nonlocatity is exchange-like, i.e., exchange 
and correlation together turn on stronger with increasing mhomogeneity. It 
can then be seen from Eq. (217) that, gradient corrections will favor greater 
density inhomogeneity and higher density' [70]. Defining average density pa- 
rameters (rs), (¢), and (s} as in Ref. [70], we find that  gradient, corrections 
favor changes d(s) > 0 and d(rs) < 0. Gradient corrections tend to drive a 
process forward when [70] 

{227) 

In a typical process (bond stretching, transition to a more open struc- 
ture, fragmentat ion,  or atomization),  one has d(s) > 0 and d(r~) > 0. Thus, 
by Eq. (227), these effects compete - another reason why LSD has met  with 
some success. In most such cases, the left-hand side of Eq. (227) is bigger 
than the right, so typically gradient corrections favor larger bond lengths or 
lattice constants (and thus softer vibration frequencies), more open struc- 
tures, f ragmentat ion of a highly-bonded transition state, or atomization of a 
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molecule. In the case of bond stretching in H2, however, the right hand side 
of Eq. (227) exceeds the left, so gradient corrections actually and correctly 
shrink the equilibrium bond length relative to LSD. 

There have been many  interesting tests and applications of GGA to a 
wide range of atoms, molecules, and solids. Some references will be found in 
Refs. [19,90, 79, 21]. 

We close by discussing those situations in which LSD or GGA can fail 
badly. They seem to be of two types: (1) When the Kohn-Sham non-interacting 
wavefunction is not a single Slater determinant,  or when the non-interacting 
energies are nearly degenerate, the LSD and GGA exchange-correlation holes 
can be unrealistic even very close to or on top of the electron [36,91,66]. (2) 
In an extended system, the exact hole may display a diffuse long-range tail 
which is not properly captured by either LSD or GGA. To a limited extent, 
this effect could be mimicked by reducing the parameter  ~ in Eq. (216). An 
example of a diffuse hole arises in the calculation of the surface energy of 
a meta l  [19,32]: When an electron wanders out into the vacuum region, the 
exchange-correlation hole around it can extend significantly backward into 
the interior of the metal.  A more extreme example is "stretched H +'', the 
ground state of one electron in the presence of two protons at very large sep- 
aration: Half  of the exact hole is localized on each proton, a situation which 
has no analog in the electron gas of uniform or slowly-varying density, and 
for which LSD and GGA make large self-interaction errors [9, 92,68]. 

"Stretched t4+,, and related systems are of course unusual. In most  sys- 
tems, the exact exchange-correlation hole is reasonably localized around its 
electron, as it is in LSD or GGA - and that  fact is one of the reasons [93] 
why LSD and GGA work as well as they do. 
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Abs t r ac t .  Hybrid methods of density-functional and wavefunction theory have 
proven to be powerful tools in electronic structure theory. The Kohn-Sham scheme 
is already a hybrid scheme, since part of the kinetic energy of the system is calcu- 
lated from the Kohn-Sham wavefunction. In the empirical hybrid methods a fraction 
of exact exchange, also calculated from the Kohn-Sham wavefunction, is mixed with 
density functional approximations to exchange and correlation. These methods give 
a significant improvement in accuracy over local- and gradient-corrected approxi- 
mations to the exchange-correlation energy. We show how insight into the nature of 
exchange and correlation in molecules and atoms can be used to construct nonem- 
pirical hybrid schemes. We review density-functional perturbation theory and incor- 
porate second-order density-functional perturbation theory into the nonempirical 
hybrid scheme. The relation between the nonempirical- and the empirical hybrid 
methods is analyzed. 

1 I n t r o d u c t i o n  

Almost all electronic structure calculations employ the Born-Oppenheimer 
approximation [1,2]. In this approximation the atomic nuclei appear as space 
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fixed point charges in the Schrbdinger equation for the electrons. In atomic 
units (h = m~ = e 2 = 1) the electronic Hamiltonian/:/~l is given by 

N., 1 N~, N.uc Zj 

i i j 

1~-~ 1 IN~-~ c ZiZj 
+ -2 ,#5 It, + -2 ,#5 I I ( , - i t b l  (1) 

Net is the number of electrons and N,~c the number of nuclei. The equilibrium 
geometry is the set of positions of the nuclei {Ri}i=I ..... g , , c  which minimizes 
the electronic energy E({Ri} i=l  ..... Y, ,c).  An (electronic) bond dissociation 
energy is obtained as a change in the electronic energy upon stretching a cer- 
tain bond length from its equilibrium value to infinity. Dissociation energies 
of molecules in their ground states will be the main focus in this article. Disso- 
ciation energies provide a demanding test for the performance of any method 
to calculate the electronic energy. Until recently, most standard approaches 
to calculate dissociation energies (and many other properties) would have 
started with a Hartree-Fock (HF) [3] calculation. Density functional theory 
(DFT) was not very popular for the calculation of dissociation energies. A 
simple approximate density functional scheme, the Kohn-Sham [4] approach 
with the local spin-density approximation (LSD) to the exchange-correlation 
energy Exc, leads to a significant overestimation of dissociation energies. In 
Table 1 (details of the calculations reported here are compiled in the Ap- 
pendix), a few examples of atomization energies in HF and LSD are listed. 
Atomization means that  the molecule is separated into the atoms, i.e., all 
bonds are broken. Although the LSD approximation gives better results than 
the HF method, this advantage is overshadowed by the fact that LSD is 
quite far away from the goal of chemical accuracy (.-~ 1 kcal/mol) and that  
no significantly improvement over LSD was provided by DFT. HF results can 
be systematically improved, although at the cost of expensive computations. 
Popular post-Hartree-Fock methods, such as configuration interaction- and 
coupled-cluster techniques [3], are able to achieve chemical accuracy, however 
the computational effort prohibits routine application to large systems. 

The development of generalized gradient approximations (GGA) [5,6,54, 
8, 9] has shifted the attention of chemists to DFT methods. The GGA's com- 
bine useful accuracy with computational efficiency. In Table ] we see that  
GGA's 1 significantly improves upon LSD. GGA's have proven to be very 
useful tools in quantum chemistry [13-15], but they still leave room for im- 
provement, especially for the congested systems in the lower part of Table 

1 The GGA calculations reported here are performed with the Perdew-Wang 91 
(PW91) [10, 11] GGA or the Perdew-Burke-Ernzerhof (PBE) [5,12] GGA, which 
are both derived non-empirically in different ways. Both are exact in the uniform- 
density limit. The numerical differences between these two functionals are in- 
significant for the calculations reported here. 
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Table  1. Electronic atomization energies AE (= E ~t°ms - E m°l~cule) of molecules. 
UHF is unrestricted Hartree-Fock [3], hyb denotes the exact-exchange mixing 
scheme defined in Eq. 2, and exp are the experimental results. The GGA em- 
ployed here is PW91. The mean absolute errors (mae) are also listed. (Energies are 
in kcal/mol, leV--23.06 kcal/mol). 

Molecule AE UHF AE LsD AE GGA AEhybAEeXp 
CH4 328 462 422 419 419 
NH3 201 337 301 294 297 
H20 155 267 233 226 232 
HF 97 162 143 137 141 
CO 174 299 269 255 259 
N2 115 267 242 224 229 
NO 53 199 171 152 153 
F2 -20 78 54 35 39 
mae 83 38 8 3 - 

1. We use "congested systems" to refer to systems where occupied binding- 
and/or  nonbinding orbitals are in the same region of space and overlap with 
each other. The electron-localization function defined in [16] typically indi- 
cates delocalized electrons in regions of space, where occupied binding- and/or  
nonbinding overlap. 

The next major  step towards affordable chemical accuracy was made by 
Becke [17-19]. Becke suggested an empirical combination of exact exchange 
Ex and density functional approximations to exchange and correlation Ext .  
Exact  exchange means that  the exchange energy is evaluated from the Kohn- 
Sham single-particle orbitals, as in the HF approximation.  A formally simple 
empirical hybrid scheme is given by [19] 

- -  _ l ~ ,  G G A  --xc~BeckdI -- a(Ex Eax aA) + --xc (2) 

where a is an empirical parameter .  Table 1 shows that  exact exchange mixing 
with a = 0.25 leads to a significant improvement  over GGA and brings us 
close to the goal of chemical accuracy. 

In this lecture we develop a theory for the systematic construction of hy= 
brid schemes. The popular empirical hybrid schemes are obtained as approx- 
imations to this theory. In particular we obtain an estimate of the parameter  
a (a = 0.25) in Eq. 2, which is close to the empirical values obtained for a 
[19]. 

After the initial publications by Becke, the empirical hybrid schemes have 
undergone modifications [20] and the potential of this method has been docu- 
mented in a number  of studies, among them [17-19, 21]. The empirical hybrid 
schemes have been applied to a vast number of problems and it is impossible 



Hybrid methods 63 

to give an overview of the literature on the subject. Here we focus mainly on 
dissociation energies and explain how the hybrid methods work. 

2 P r e l i m i n a r i e s  

In this section we study a formal decomposition of the ground-state energy. 
This decomposition is the starting point for modern approximations in DFT. 

We define a A-dependent Hamiltonian/:/x by 

N¢, No, 1 ~ A 

i i iC j  - -  r j  
(3) 

and 

where 

E x = T x + f dar vx(r)p(r) + Vi~ 

W ~ = < ~ I : F I ~ >  (5) 

¢), is the ground-state wavefunction of/:/x and V~e = 1/2 ~ 1 / J r , -  rjJ. 
The total energy will be rewritten as 

E ~ : (Oh Ifi~,l¢~> (7) 
)~ 

: + [ (s) 
Jo dA 

The variational principle ensures that (d¢~/dAJflxJ~bx)= (¢x JflxldO~/dA) = 
0 [22,23], and therefore 

e ( ~ l H ~ l ~ )  1 dardar, Px(r,r ')  + dar p(r) (9) 
dA 2 Ir - r' I dA 

P~(r, r') is the pair density calculated from ~ ,  

, (4) 

Vh_-- 1 is the physical external potential of the system, i.e. it is a potential 
caused by atomic nuclei, and px=l(r) is the corresponding electron density. 
Note that we have dropped the term ~ ,  contributing to the 
electronic Hamiltonian Eq. 1. This term gives a geometry-dependent shift in 
the energy but leaves the wavefunction and the electron density unchanged. 
The potential vx(r) for A #- 1 is defined by the condition that p~ = p),=l, i.e., 
the potential is adjusted to keep the electron density fixed. The ground-state 
energy E ~ of/:/x is given by 
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f 
P;~(r, r') = N(N - 1) ] d3r3...d3rgd0-1.., d0-N 

X ~3~ (r,  0"1, r ' ,  0-2, r3,  0 - 3 , . . . r N ,  0-N)¢)~(r, 0-1, rl ,  0-2, r3,  0-3 , . . .  rN ,  O-N). 

(10) 

The pair density P~(r, r') gives the probability density to find an electron at 
point r and a second electron at point r'. 

The first term in Eq. 8 is given by 

(~x=olH~=oI¢~:o = Ts + ff  d3r p(r)v~=o(r) . (11) 

Ts = (¢x---012bi!/~x=0) is the kinetic energy of a non-interacting ()t = 0) ground- 
state wavefunction, usually a Slater determinant, which yields the density 
p(r) of the interacting ()t = 1) system. Combining Eqs  8, 9, and 11, we find 

S IL'X S P£(r, r') S ~ = Ts + d3r p(r)v~(r) -t- -~ dA d3rd3r' "~-r;T (12) 

The )t-dependent pair density is split up into a )t-independent term and the 
)t-dependent exchange-correlation hole pxc,~ (r, r ~) 

P~(r, r ') = p(r)[p(r') + Pxc,~(r, r')] . (13) 

The factor p(r) in front of the bracket gives the probability density to find an 
electron at point r, and the first term inside the bracket is an approximation 
to the probability to find a second electron at point r ~ given one at r. The 
second term in the bracket, the exchange-correlation hole at coupling strength 
)t, accounts for the fact that  the electron at point r cannot be found anywhere 
else in the system, so that  the probability to find a second electron at r' is 
reduced. Furthermore, Fermi- and Coulomb correlation alter the probability 
to find a second electron at point r ~. The electron-electron interaction term 
in Eq. 12 becomes 

l j "d3rd3r'Px(r--'r')lr - r'l - U[P] + 1 7-2 d 3 r d 3 r  , p(r)pxc,x (r, r') ~ : ~'7] ' (14) 

where 

i i p(r)p(r') (15) u[p] = d3r 3r'  7--VI 
Equation 12 becomes 

E x = Ts + d3r p(r)vx(r) + )tU[p] + d~ Vxc,x , (16) 

with 

V x c ~ = l  f d3rd3r , p(r)pxc,~(r'r~) (17) 
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The exchange-correlation energy Ex~c of DFT at coupling-strength 3~ is now 
given by the )~-integral on the right-hand side of Eq. 16 

/? EXxc -= d ~  Vxc ,x  . (18) 

Equation 18 is the famous adiabatic connection formula [24-26], which we 
will use extensively in this article. The complicated many-body contributions 
to the ground-state energy are now all contained in the exchange-correlation 
energy ExXc. From Eqs. 4, 16, and 18 we find 

Ex~c : T x - Ts + Vi~ - )~g . (19) 

Note that  the correlation contribution to the kinetic energy Tc .~ ,  Tc,~ : T ~ - 

Ts, has also been absorbed in Ext .  The adiabatic connection formula Eq. 18 
accounts for Tc,x by averaging the potential contribution to the exchange- 
correlation energy Vxc,~ over the coupling constant ~. 

ExXc is further decomposed into an exchange Ex and a correlation contri- 
bution Ec,x, 

Ex~ : )~Ex + E~ , (20) 

where 

and 

E X  ~ VXC,3~0 

= ( ¢ ~ : 0 1 7 - 1 ~ : 0 )  - u [ d  , (21) 

E~ = E~c - hE× 

L ~ vc ,~  , ( 22 )  d~ 

split up Ec x into a potential-energy and a with Vc,~ = Vxc,~ - Ex. Now we 
kinetic-energy contribution 

EXc = Tc,~ + AVc,~ . (23) 

Equations 18 and 22 show that  

Utilizing E~c = T )~ - T s  + V i i  - )~U - )~E× = T x - T s  + )~Vc,~ and Eq. 23, we 
confirm that  

r c , ~  = T x - r s  . ( 2 5 )  

To introduce the electron density as variable, we note that  Ts and Ex~c are 
funetionals of the electron density [4,27,28]. Obviously f dar p(r)vx(r)  and 
1 f dardar I e~r)p(r') 7 ir_r,i are also functionals of the electron density, and thus 
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the total ground-state energy E ~ is a functional of the ground-state density. 
Furthermore, the functional 

E~[t~] = rs[t~] + d3r t~(r)vx(r) + ~U[/~] + exc[p ] (26) 

minimizes [4,27,28] if the density ~ is equal to the density p generated by 
v;~(r). The value of E:'[p] is the ground-state energy. The stationarity condi- 
tion for Eq. 26 is 

0 = ~ e  ~ [/5] 

=/d3r ~ S f i ( r )  , (27) 
P( ) 

where the variations 5t5 are constrained such that  f d3r 5~5(r) = 0. Equa- 
tion 27 can only be satisfied if ~E[~] = const. Therefore Z(~) 

~E~[~] 
const - -  

~T~[~] ~e~c[~] 
-- 5~(r----~ + v~(r) + )~u([fi];r) + ~(r----~ ' (28) 

with 
u ( [p ] ; r )=  [d3r ' p(r') (29) 

J I r = P l  " 
Equation 28 can be interpreted as the Euler equation of non-interacting elec- 
trons [4] whose energy Es is 

with 

Es[p] - Ts[p] + f d3r VKs([p]; r)p(r) , (30) 

vKs([p]; r) = v ~ ( r ) +  ~ ( [ p ] ;  r ) +  - -  (31) ~p(r) 

Note that  the density is independent of A, and therefore the Kohn-Sham 
potential VKS [4] is also independent of A. For A = 1, Eq. 31 becomes 

N,,oo z~ + u([p]; r) + (32) 
~ , ( [p] ;  r) : - ~ .  Ir - Rd--------~ ~p(r) 

3 

Assuming that  the ground-state wavefunction of the non-interacting problem 
Eq. 30 is a single Slater determinant ,  the Schr6dinger equation for the single- 
particle orbitals ¢i(r) is the Kohn-Sham [4] equation 

[ - 1 V 2 +  vKs([p];r)] ¢ , ( r ) = e i  ¢i(r) , (33) 
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0C¢ 

p(r) = E I¢'(r)[2 " (34) 
i 

The effective potential vKs depends on the electron density and the Kohn- 
Sham equation has to be solved iteratively, starting with an initial guess for 
the electron density p. Ts is then obtained from the occupied orbitats 

oc~ 1 / 
T. = E - 2  d3r ¢~(r)A¢i(r)  , (35) 

i 

and the electron density p(r) -- ~-]oc¢ i¢,(r)[2 is used to calculate Ex~c[p] and 
U[p]. The calculation of the ground-state energy and the ground-state den- 
sity has now formally been reduced to a problem of solving the independent- 
particle equation Eq. 33. However, the functional E~xc[p], which appears in 
Eq. 26 and whose density derivative contributes to the Kohn-Sham poten- 
tial, is not known in an exact and practically useful form. In calculations on 
physical systems we only need Ex~ 1 , and approximations to E ~  1 , have been 
developed to transform the above-described scheme into a useful method for 
electronic structure theory [29-31]. 

3 D e n s i t y - f u n c t i o n a l  p e r t u r b a t i o n  t h e o r y  

In the previous section, we introduced a particular decomposition of the 
ground-state energy E = Ts + f d3r v~p + AU + EXxc and we derived ex- 
pressions for Ts and Ex in terms of ¢),=0 (Eqs. 21 and 35). In this section we 
give an explicit expression for Ec ~ in terms of the eigenvalues and eigenfunc- 
tions of the Kohn-Sham Hamiltonian T + ~=0 .  

G6rling and Levy [32] derived a series expansion of E~ in powers of)% with 
the Kohn-Sham problem as zeroth-order reference system. The Hamiltonian 
_f/~ is written as 

/t~ = f/o +/:/(A) , (36) 

where 

and 

Note that vx=0(r) 
theory [3] is used to expand E )' in powers of A, 

E~ = E:~=° + ( f  d3r ~ p ( r )  + U + Ex) 
)~----0 

1 ( f  d 2 v ~ ( r ) ' r '  d2E~c~ A 2 
+ d3r Pt J + 

--[-  . . . .  

/~o = 2? + ~5~=o (37) 

= + - . (38) 

= VKs(r). Standard Rayleigh-SchrSdinger perturbation 

(39) 
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E~c = f :  dAV~,~ has no first-order term in ,~. The second-order contribution 

to Ec x is given by [32, 33] 

1 2 x x=0 d E~ 
E~,~ = ~d,~2 

K S  K S  ^ K S  K S  2 
1 I(¢~ ¢~ IV.l¢~ Cz )1 
4 e ~  -Jr- ¢~ - e i - ¢rj 

i jo t f l  

- ~ I (¢~S l~ l~=°  + ~ + ]l¢"~s}l~ , (40) 
ic~ ~(~ - -  ~i 

where the indices i and j run over the occupied, and a and ~ over the 
unoccupied, Kohn-Sham orbitals, ei denotes a Kohn-Sham eigenvalue, and ] 
is the non-local exchange potential of the unrestricted Fock operator formed 
from the Kohn-Sham orbitals. 

To obtain expressions for Ec x we still need to find the potential vx, which 
enters into the calculation of the perturbed wavefunction Cx and is therefore 
needed to obtain Ec x. In order to calculate the correlation energy in nth order, 
we need the wavefunction CA in order n - 1. The wavefunction in order n -  1 
can be constructed from knowledge of vx in order n - 1. Using the fact that  
~EX[fi]/5~l~=p = const we find 

6 x -  
v~(r) - ~ ( r )  {r~[~ + ~U[pq + ~Ex[p-] + E~[p]}~=~ + c o . s t  

= VKs([p]; r) - ,~u([p]; r) - )~Vx([p]; r) 5~(r) I~=p , (41) 

and therefore 

dn-lv,x(r ) 
d,~n- 1 

5 d n-1 
- 5~(r) dA "-1 {Ts~o'] + AU[~] + AEx[~] + E~[~]}~=~ 

d n -  1 const 
+ d~--1 (42) 

The knowledge of {Ts[~] + )~U[p-] + AExLo'] + EXc[p-]} in the order (n-l) of A 
determines dn- l vx /d )~ - l l x=o  , which is what is needed to calculate 

d ~ dX~ {Ts[p-] + ),U[p-] +)~E×[pq + E~c[p-]}. Once we have evaluated Ec x up to a 
certain order, it is easy to obtain a series expansion for Vxc,;,, by simply 
taking the derivative of Ex~c with respect to ,~. 

In practice, the calculation of the d '~- l vx/d)~ '~- 1 Ix=0 for arbitrary n turns 
out to be very difficult. In zeroth order, vx is just vKs and various methods 
have been developed to construct vKs for a given density, among them [34- 
38]. The first-order term of vx, which appears in Eq. 40, is - u  - Vx, where 

Vx = ~ l ~ = p .  A method to calculate the exchange potential Vx has been 
propoSed in Ref. [39], and in Ref. [40] the implementation of yet another 
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approach to calculate Vx is described. The higher-order terms of v~ can in 
principle be obtained, but so far no exact calculation of these terms has been 
reported. 

In the present work we evaluate the density-functional perturbation ex- 
pansion up to second order. To solve the zeroth-order reference problem, we 
construct the Kohn-Sham potential Eq. 31 using the GGA approximation 

to ~E~c[p] Furthermore, we also use the GGA approximation to Vx, which is ~p(r) • 
needed to calculate Eq. 40. 

4 T h e  adiabat ic  c o n n e c t i o n  

f o r  a p p r o x i m a t e  d e n s i t y  f u n c t i o n a l s  

In principle we are now able to construct Ex~c in a systematic way. This 
is however not useful for numerical calculations on large systems, since the 
computational effort to evaluate higher than second-order perturbation ex- 
pansions is too high to perform these calculations for molecules with hundreds 
of atoms. Below we will see that  second-order density-functional perturbation 
theory itself is not accurate enough to calculate atomization energies. 

To obtain properties of real systems, only Ex~c for )~ = 1 is needed and 
in practice local- or gradient-corrected approximations to Ex~c 1 are made. A 
simple approximation is the local spin-density approximation [4]. More re- 
cently LSD has been significantly improved by adding gradient corrections. 
Gradient corrected approximations (GGA's) to E~xcl[p] [5-9] are of the gen- 
eral form 

E a a A  = / d3r f(p(r),  Vp(r)) (43) 
XC 

Note that  omitting the superscript ), implies ), = 1. An interesting result 
obtained in Refs. [41,42] and Eq. 49 of [32] shows that the )`-dependent Ex~c 
can be obtained from Exc via density scaling 

E~c = ),~ExcLo(r/),)/x 3] . (44) 

The )`-dependent Ex~c itself is not so much of interest to us. What  we are 

interested in is the )`-decomposition of Exc, i.e. Exc = f01 dA Vxc,~. Equations 
18 and 44 show that  Vxc.~ can be obtained from Exc [41,42,32] 

d 
Vxc,~ = ~-~ {A2Exc[p(r/) ' ) /A3]}  • (45) 

Any density functional approximation (DFA) E DFA to Ex~c 1 can be plugged 
into the right hand side of Eq. 45, and I~,DFA c a n  then be written as 

~ X C  

EDFA = f : = l  d~ vDF- A This formula facilitates the elimination of the den- ' XC,A " 

sity functional approximation to Vxc,~ for small values of A, where the local- 
and gradient-corrected approximations are often much less reliable than for 
large ),-values. 
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p ~ t o m s  Fmolecule]  ~ E x c  2-, a n d  AExc Table 2. Comparison of the exact AEx ( :  - x  -~-x j-, . 
contribution to the atomization energy, with GGA results. The GGA employed here 
is PW91. (Energies are in kcal/mol, leV=23.06 kcal/mol). 

Molecule AECx cA A E x  ApGGA AExc 2 AECxc ~A AExc 
CH4 193 181 315 309 277 275 
NH3 125 97 232 239 201 197 
H20 109 81 180 202 160 160 
HF 71 49 105 126 96 94 
CO 95 40 158 225 140 130 
N2 40 -34 123 199 99 85 
NO 34 -43 104 177 83 65 
F2 6 -70 35 107 27 12 
mae 47 43 9 

To illustrate the latter point, we study various contributions to the atom- 
ization energy. In Table 2 the differential exchange energy AEx = Ex t °ms -  
EmoLecule the differential exchange-correlation energy (up to second order in X 

~) AExc,~ = AEx + AEc,~, and the differential exchange-correlation energy 
AExc, are compared at the GGA and the exact levels. The "exact" AExc in 
Table 2 is obtained by subtracting A ( E  aaA -EGxc GA) from the experimental 

A F ,  GGA atomization energies. We see that - - - x  is too large compared to the exact 
result. This is especially the case for the congested systems in the lower part 
of the table. Furthermore, A E  GGA is usually smaller than the exact result, XC,2 
but the error made by GGA becomes smaller compared to the error for AEx. 
The best results are obtained for AExc, the quantity needed to predict the 
experimental atomization energy. 

To understand these findings [17-19,43-48], we note that the exchange- 
correlation energy of a system becomes more negative when the exchange- 
correlation hole becomes deeper and more short-ranged. The exact exchange 
hole pxc,~=o(r, r ~) in a covalent diatomic molecule extends over both nuclei 
and is very non-local. If the reference electron is at point r, where r is close to 
the first nucleus, then the exchange hole around that electron has a significant 
value when r j is close to the second nucleus. However, the exchange hole in 
the GGA approximation is always localized around its electron [49], therefore 
EGx GA for the molecule is too negative. In atoms the exact exchange hole is 
always fairly localized around its electron and the GGA approximation to the 
hole is very accurate. Now if we turn on the electron-electron repulsion, the 
exact hole in the molecule becomes deeper around the reference electron at 
point r and localizes rapidly compared to Pxc,;~GGA (r, r ') ,  so that vm°lecuie" xc,~ as a 

function of)~, drops more rapidly than its GGA counterpart. This expectation 
is confirmed by comparison of AP, GGA with AExc ~. For larger values of ~ X C , 2  
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the exact- and the GGA exchange-correlation hole are both localized and we 
expect the GGA to work accurately. 

At this point it is useful to introduce the notions of static- and dynamic 
correlation. Static- and dynamic correlation are frequently- used terms in 
the electronic structure theory of atoms and molecules. Nevertheless they 
are not clearly defined. A system is often said to have static correlation if 
the correlation energy cannot be obtained from second-order perturbation 
theory with a HF zeroth-order reference system. Examples of molecules with 
static correlation are F2 and Oa. The qualitative amount of static correlation 
depends on the reference system. In the present context the reference system 
is the Kohn-Sham non-interacting problem, and there might be cases where 
the density-functional perturbation expansion and the expansion around the 
HF reference system deviate in the prediction of static correlation. 

In the present work we use the terms static and dynamic in connec- 
tion with density-functional perturbation theory. Factors which give rise to a 
slowly-convergent perturbation expansion (or to static correlation) are small 
gaps between the highest-occupied and lowest-unoccupied orbitals, so that 
the energy denominators in the perturbation expressions are small. This 
situation is realized for stretched covalent bonds, where the binding- and 
antibinding orbitals are close in energy. In this case the second-order per- 
turbation expansion gives a much too negative correlation energy. Another 
reason for a slowly-convergent perturbation expansion is that  several electron 
pairs occupy the same region of space, such as in multiply-bonded systems 
(congested systems). Inter pair interactions become important,  and they get 
accounted for only in higher-order perturbation theory. For multiply-bonded 
systems we also obtain a much too negative correlation energy in second or- 
der. A system is said to have primarily dynamic correlation if second-order 
perturbation theory accounts for the electron correlation. An example of such 
a system is the Ne atom [50]. 

In Table 2 we see that the congested systems indeed show a particularly 
large overestimation of AExc by the second-order approximation AExc.2. 
This is due to the strong static correlation present in these molecules. We 
also see that  the density functional underestimates the static correlation for 
these systems. On the other hand, zlEax aA is strongly overestimated. In con- 
gested systems the overlapping orbitals give rise to complicated and highly 
delocalized exchange holes which are poorly described by LSD and GGA [50, 
51]. Obviously we get a cancellation of errors between approximate exchange 
and correlation, so that  AExGc C'A is more accurate than its individual compo- 
nents. Note, however, that the systems with strong static correlation (lower 
part of Table 2) have a disturbingly large error in AExc. 

The picture which emerges from Table 2 and from the discussion of 
pxc,~(r,r ')  is that  A V .  GGA is much too large at A = 0 (AVxc,~=o = AEx) XC,>, 

and that  AK CCA increases too slowly as A increases. The overestimation of XC,A 

AVxc,~=o and the slow increase of AVxc,~ as a function of A lead to an effec- 
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tive error cancellation at large A values. However, we do not want to leave 
the range of A values which contribute to EaCA since GGA's are designed 

~XC 
A----I to approximate Exc. We therefore assume that V GGA is most accurate for 

• XC,A 

A~I. 
Before we continue, we recapitulate what we have learned about the adi- 

abatic connection. We saw how to construct Vxc,~ in term of a power series 
expansion. Furthermore, utilizing Eq. 44, we can A-decompose any given 
approximate functional for Exc. We also showed that Y,, G G A  is accurate for 

X C , A  

vGGA large A-values (A ~ 1), and that serious errors are made by . xc,~=o. 
In the following section we take the most accurate and computationally 

inexpensive ingredients from both the perturbation- and the DFT approach 
and combine low-order perturbation theory with accurate DFT approxima- 
tion to Vxc,~=l. 

5 T h e  [ 1 / 1 J - P a d 4  m o d e l  f o r  t h e  a d i a b a t i c  c o n n e c t i o n  

To construct an approximation to Vxc.~, we first derive properties of the 
exact Vx¢,~. Second-order Rayleigh-SchrSdinger perturbation theory always 
gives a negative contribution to the energy, therefore Ec.~ is negative and 
this implies that  

dVxc,~ < 0 . (46) 
dA 

Furthermore, since 

we find [52] 

(47) 

Vxc,  > - u .  (48) 

The Vxc,~ curve is a monotonically falling curve, which is bound from below 
and thus approaches a constant value as A -+ cx>. A simple ansatz for Vxc,~ 
which satisfies these constraints is the [1/1]-Pad4 [53,33] 

[1 + Ab] 
VxDc!~l = 5 [ ~ j  (49) 

The parameters ~, b, and ~ are fixed by the three conditions 

I v [1/1] = E ×  (50) • XC,A=O 1 

II v [1/1] V cCA (51) 
v XC,A=I ~ ' XC,A=I ' 

dV~ [1/1] dYxGc?? 
III ~ x=l - dA x=l (52) 

Condition I is chosen to eliminate the Eax GA contribution to the adiabatic 
connection, since local- and gradient-corrected approximations to Ex often 
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do not work well. Conditions II and III  are based on the observation that  
local- and gradient-corrected approximations work best for exchange and 
correlation together, i.e., for Vxc,~,,. 

We also use the [1/1]-Pad4 ansatz to represent AvGGA In this case the 
' XC, A " 

conditions I and III  are replaced by 

v[1/tl = EGGA (53) 
I I : v XC,A=O ~ X  1 

/01 I I I ' :  EGx G A  - -  dh vGGA (54) 
-- " XC,A " 

From this V, GGA xc,x curve we evaluate the slope at A = 1 and use it as an in- 
put for the construction of the [1/1]-Pad4 model. The GGA curve (satisfying 
conditions I ' ,  II, and I I I ' )  and the [1/1]-Pad4 curve (satisfying conditions 
I -  III)  obtained in this way can be characterized by the set of three numbers 
E G G A  v G G A  d V  GGA /dA and Ex, v G G A  d V  GGA /d~ respectively. The 

X ~ " X C , A = l  1 " X C , X = l /  ) " X C , A = I  ) ~ " X C , . X = l / - - "  " )  

A v G G A  [1/1]-Pad4 representation of V GGa usually accurately reproduces _ ,xc ,~  
• X C , A  

calculated from Eq. 44, and is simpler to deal with in algebraic manipula-  
tions. 

The analysis of the adiabatic connection in the previous section was car- 
ried out for the atomizat ion process, where the contributions from the core 
electrons cancel out. The A-dependence of Vxc.~ for the core electrons is es- 
sentially linear, since the zeroth-order Hamiltonian 7 ~ + ?Ks dominates in the 
core region and correlation is only a weak perturbation,  so that  second-order 
density-functional perturbat ion theory gives an accurate correlation energy. 
In the core, exchange dominates correlation and we do not expect to find an 
effective error cancellation between exchange and correlation, as is the case 
for the valence electrons. In order to eliminate core contributions, we apply 
the [1/1]-Pad4 to the energy difference upon atomization and not to the 
total  exchange-correlation energies. 

As an illustration of the [1/1]-Pad4 model, we consider the atomizat ion 
of the NO molecule. In Fig. 1 the adiabatic connection for the atomizat ion of 
N O  is shown, both in GGA and in the [1/1]-Pad4 approximation.  The [1/1J- 
Pad4 approximation correctly describes the strong static-correlation contri- 

bution of this process. --AV[1/t] rapidly drops from its A = 0 value to the v X C , ~  

A = 1 value. The slope of the [1/1]-Pad4 curve at A = 0 is much bigger than 
the slope of the GGA curve. If we write 

d A v ' G G A  , k = l  

xc,  =  ccA   VGCA _ aEx G ) (55) 
dA , ×c,~=1 , 

where O~ GGA is a constant to be determined from the above equation, then 
dZ Vx%?2/d:q =o in the [1/1]-Pad4 representation is given by 

d A v G G A  
X=O 1 (AVGG A AEGxGA ) (56) -- ' XC,X -- 

dA O~ GGA \ x c , ~ = l  
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--AVxc,~ 
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Fig.  1. Adiabatic connection for the atomization of NO and CH4. Shown are 
--Av'G~A~ xc,~ (solid line), the [1/1]-Pad4 (dotted line), the [2/2]-Pad4 (long dashes), 
and --AVxc,~ obtained from second-order density functional perturbation theory 
(dashed line). (Energy in hartrees.) 

The  pa ramete r  a measures the bending of the adiabat ic  connection curve. 
c~ tends to 1 for a straight-l ine connect ion (no static correlation),  and to 0 
for m a x i m u m  bending (strong static correlation).  For (~ = 0, the [1/1]-Pad4 
curve immedia te ly  assumes its A = 1 value for any A > 0. 

For the [1/1J-Pad4 model,  employing exact exchange, we have the same 
relations 

d A  l/[1/1] dz~ V.. GGA 
~vdAXC,X ),=1 - dAXC'~ £----1 (57) 

= ~[1/1] ( A v C C A  _ A E x )  (58) \ X C , A = I  1 

d A V [ U  1] 
~ x c , ~  x=0 1 ( A V  GGA - AEx)  (59) 

dA - cdl/1] ~ xc,~=l , 

where c~[ ]/1] is obtained f rom condit ion III  
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A I / G G A  A I ~ G G A  
0~[1/1] ----- o GGA ~ "  x c , x = l  - -  - - ~ x  

z ~ v G G A  _ / ~ E x  
• XC,A=I 

(60) 

A big error in the exchange energy indicates strong static correlation and 
the coefficient a[1/1] becomes small, as can be seen from Eq. 60. Small a [1/1] 

n v  [1/1] shows a big curvature compared on the other hand means that  the ~,xc,~ 
t o  GGA 

In Fig. 1 we also show the adiabatic connection for the atomization of 
CH4. In CH4 (uncongested system) the bonds are well separated from each 

A E G G A  other and this means that the error in ----x is much smaller compared to 
multiply-bonded systems. Furthermore, since the binding electrons pairs are 
separated, we have little static correlation. 

6 A p p l i c a t i o n s  o f  t h e  [ 1 / 1 ] - P a d 4  model  

The most interesting application of the [1/1]-Pad4 model is to calculate 

AExc --- f :  dA ~A~/[1/1],xc.~ • Table 3 shows that the overbinding tendency of 
GGA gets reduced by the [1/1]-Pad6 model for the adiabatic connection. 
The most significant improvements are obtained for the congested systems in 
the lower part of Table 3. In the more uncongested systems such as NH3 or 
CH4, GGA's typically make small errors and the [1/1J-Pad4 does not lead 
to an improvement. 

The slope at A = 0 obtained from the [1/1J-Pad4 is given by 

dAV'[1/1] x = 0  (Av'GGA -- A~Ex)2 X C , A  k X C , ~ = I  

- ~  = d A Vxa aA , / d, ~ 
(61) 

In Table 4 this prediction for dAVxc,~/dAl~=o is compared to exact calcula- 
tions of dAVxc.~/d,kl~,=o with density-functional perturbation theory, and it 

turns out that dAV[xlc!~]/dAl~,=o is usually in good agreement with the exact 
results. This provides a further verification of the [1/1J-Pad4 model, in addi- 

tion to the atomization energies obtained from ~A~/[1/1], xc,~ . The straight lines in 
Fig. 1 have the exact slope of the adiabatic-connection curve at A = 0, and 
illustrate how nicely the [1/1J-Pad4 reproduces this slope. Similar figures can 
be found in Ref. [33]. 

7 Using density functional perturbation theory 
to improve the [1/1]-Pad@ model 

The [1/1]-Pad4 interpolation also has its limitations. First of all, the accu- 
racy of the procedure is limited by the accuracy of the input data  A V  GGA - -  " X C , ~ = I  

and dAVxacaA/dAl~,=l. It has been shown that these input data  are responsi- 
ble for the remaining error (~ 4 kcal/mol) in the atomization energy of H2, 
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T a b l e  11. Comparison of atomization energies obtained from GGA and vari- 
ous hybrid approximations with experimental results. [1/1] and [2/2] denote the 
[1/1]-Pad~ and [2/2]-Pad$, respectively. In the column a = 0.25, results obtained 
from Eq. 66 with a =0.25 are listed. The GGA employed here is PW91. (Energies 
are in kcal/mol, leV=23.06 kcal/mol). 

Molecule GGA [1/11 [2/21 exact a=0.25 
H2 105 105 105 109 105 
LiH 53 52 54 58 52 
Li2 20 20 20 24 19 
LiF 137 131 133 139 130 
Be2 10 8 7 3 6 
CH4 422 419 418 419 419 
NH3 301 294 294 297 294 
H20 233 226 226 232 226 
OH 110 106 106 107 106 
HF 143 138 138 141 137 
CI2 64 59 57 58 57 
P2 120 111 111 117 109 
m a e  4 4 4 - 4 

B2  77 70 69 71 65 
CN 197 181 181 179 177 
CO 269 257 257 259 255 
N2 242 227 226 229 224 
NO 171 155 155 153 152 
O2 143 128 126 121 123 
03 185 150 146 146 137 
F2 54 41 38 39 35 
mae 18 3 2 4 

where AV. CGA is too  smal l  by a b o u t  14 m h a r t r e e  [49]. For Li2, LiH, and XC~X~I 

LiF,  the  G G A  p r o b a b l y  also predic ts  too  l i t t le  cor re la t ion  energy, and  this  
error  is not  c o m p e n s a t e d  by  an a p p r o p r i a t e  ove res t ima t ion  of A E x .  Fur the r -  
more ,  the  i n t e rpo l a t i on  p rocedure  i tself  has i ts l imi ta t ions .  To improve  on 
the  l a t t e r  po in t  we can include fur ther  accura te  i npu t  d a t a  in a more  flexible 
i n t e rpo l a t i on  scheme. 

An  obvious  extens ion  of the  [1/1]-Padd scheme is to use the  exact  dAVxc,~, 
/d.X[x=o f rom dens i ty - func t iona l  p e r t u r b a t i o n  theory  and to  include this  in- 
f o r m a t i o n  in a [2 /2]-Padd ansa tz  for AVxc,~. 

"zcA = a  + A d + A 2 e j  
(62) 

The  add i t i ona l  two p a r a m e t e r s  in this  ansa tz  are fixed by the  cond i t ions  
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J A I / G G A  Table 4. Comparison of AVxc,x=o = dAVxc,~/dXl~=o obtained from ~-xc,~ and 
from AV. I1/q with exact results from density-functional perturbation theory. The XC,X 

GGA employed here is PW91. (Atomic units are used.) 

Molecule A ~ G G A  t . ~ [ 1 / 1 ]  I e x a c t  I ~,xc,~=o ~V~c,~=o AV~c,~=0 
CH4 .389 .456 .407 
NH3 .339 .506 .453 
H20 .226 .398 .386 
HF .109 .244 .245 
CO .200 .596 .592 
N2 .265 .790 .742 
NO .221 .820 .701 
F2 .091 .895 .566 
mac .281 .077 - 

2 [2/21 
IV : 0 <_ [ .  d)t2 j = min, 

X = 0  

n~s[2/2] is analytic for 0 < X < 1 . V : ~ v X C , X  

(63) 

(64) 

Conditions IV and V ensure that the [2/2]-Padd curve tries to follow the 
straight line with the exact slope, up to second order in X. 

For systems where A E ~  aA shows a very large error, the [1/1]-Pad~ curve 
becomes somewhat unrealistic and the slope at X = 0 obtained from the 
[1/1]-Padd curve does not accurately reproduce the exact slope obtained from 
density-functional perturbation theory. Examples for such systems are F= and 
O3 (see Table 4 and also Ref. [33]). The atomization energies obtained with 
the [2/2]-Padd are also listed in Table 3, and we see that  [2/2]-Padd scheme 
further improves the atomization energies for F2 and Oa. 

For NO and CH4 the [2/2]-Padd curves are plotted in Fig. 1. They are 
virtually identical to the [1/1]-Padd curves for these systems. 

8 R e l a t i o n  b e t w e e n  t h e  n o n e m p i r i c a l -  a n d  e m p i r i c a l  

h y b r i d  s c h e m e s  

8.1 E m p i r i c a l  h y b r i d  s c h e m e s  

Hybrid schemes, which mix a fraction of exact exchange with density func- 
tional approximations to exchange and correlation, have been invented by 
Becke [17-19]. Motivated by the adiabatic connection formula, Becke pro- 
posed the 3-parameter mixing formula [18] 
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EBeckel = ]5~LSD ..{_ ao(Ex - EL SD) 
XC ~ X C  

a I E  GGA LSD , , -GGA E f S D )  + ~, x - E x ) + actr~ c - . (65) 

The crucial parameter for the success of this approach is a0. a0 determines 
how much LSD exchange is replaced by exact exchange to cure the prob- 
lems associated with density functional approximations to E×. The empirical 
parameters a0, a~, and ac are obtained from a fit to atomization energies, 
ionization potentials, proton affinities, and total energies [18], and their val- 
ues are 0.2, 0.72, and 0.81, respectively. More recently [19] Becke introduced 
a formally much simpler l -parameter  mixing formula 

EBeckelI a(Ex GGA ]5?GGA (66) 
x~ = - Ex ) + - x c  

The mixing coefficient a is fitted to atomization energies, ionization poten- 
tials, and proton affinities. As in the case of Eq. 65, a is dependent on the 
data  set used and on the choice of the density functional approximation to 
Exc[p]. The value of a reported by Becke is 0.16 or 0.28, depending on the 
GGA used. 

Here we show how the fixed mixing coefficient can be estimated, starting 
from the [1/1]-Pad4 hybrid scheme. To arrive at a system-independent mixing 
coefficient, we use the fact that  the bending of the A V  c c A  curve, as measured 

XC,A 

by o: GGA ( Eq.  55), turns out to be fairly system independent for a large 
number of molecules. We will see that a fixed mixing coefficient therefore gives 
good results for this class of molecules. However, systems for which AV.  GGA 

XC,A 

does not show the typical bending behavior are not accurately described by 
this fixed mixing coefficient. Furthermore, we show that  the validity of a fixed 
mixing coefficient relies on the fact that the error in AEGx GA is sufficiently 
small. 

8 .2  E s t i m a t i o n  o f  t h e  e x a c t - e x c h a n g e  m i x i n g  coef f ic ien t  

To keep the discussion simple, we focus on Eq. 66, which has only an 
exchange-mixing parameter,  and estimate the value of this parameter. Ap- 
plied to a chemical process, this formula can be rewritten in terms of energy 
differences 

-- A ]77"GGA (67) --Al~'BeckeII--xc ---- a(AEx AEGx GA) + - - - - x c  

We define the quantity 5 hyb by 

A phY b A F G G A  
5h~b = ----xc -- ----x¢ (68) 

z~ VGGA 
XC,A:I 

where hyb stands either for BeckeII or [1/1]. 5 [1/1] depends on 4 variables: 
AEx, A E  GGA, A V  GGA and dAVGf fA /dAIx -1  but, due to the normalization 

-- " XC,A=I , -- ' 

performed (i.e., the division by AvGGA ) only 3 variables can be varied 
• XC,A=I ) 

independently. To further simplify the discussion, we write dAVx  GGA/dAl~=l 
as 
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Tab l e  5, The reduced exchange energy A E G C A  = L~EGGAIz~iv'GGAx / XC,~=l and the 
error in the reduced exchange energy AAECx GA (AEx AEGCA'~/AV,  GGA - -  ~ X ] /  XC,~,= 1 

for the atomization of molecules. The bending-parameter ~GGA and the effective 
exact-exchange mixing coefficients for the [1/1]-Pad4- and [2/2]-Padd schemes are 
also listed. The GGA employed here is PW91. 

M o l e c u l e  AF-~Gx G A  - - A A E  G G A  Ol G G A  a [1/1] a [2[2] 

H2 0.43 0.01 0.63 0.259 0.065 
LiH 0.51 0.06 0.64 0.253 0.023 
Li2 0.22 0.16 0.42 0.193 0.194 
LiF 0.75 0.18 0.69 0.231 0.216 
Be2 0.63 0.49 0.45 0.157 0.320 
CH4 0.57 0.04 0.59 0.244 0.300 
NH3 0.49 0.11 0.61 0.240 0.260 
H20 0,55 0.14 0.62 0.237 0.238 
OH 0.50 0.20 0.63 0.234 0.247 
HF 0.62 0.19 0.64 0.232 0.232 
C12 0.46 0.36 0.51 0.194 0.253 
P2 0.02 0.53 0.52 0.203 0.206 
B2 0.66 0.52 0.46 0.154 0.159 
CN 0.41 0.56 0.58 0.200 0.200 
CO 0.55 0.32 0.61 0.214 0.215 
N2 0.28 0.52 0.61 0.215 0.217 
NO 0.29 0.66 0.60 0.205 0.214 
02 0.39 0.74 0.58 0.191 0.212 
O3 0.14 1.40 0.59 0.180 0.203 
F2 0.15 1.82 0.63 0.174 0.204 
averages 0.43 0.45 0.58 0.211 0.209 

a,s 
d A  v G G A  

- - ' X C , X  X----1 = o I G G A ( A v G G A  - -  A E ~ G A )  ( 6 9 )  
d = ~  \ " X C , ~ = I  " 

Most molecules in Table  5 have O: G G A  values which scatter  only li t t le a round  
the average value of 0.58. The  molecules with except ional ly  low or high a GGA 

are Li2, B2, Be~, and LiF. To a good approx imat ion  we set a GGA = 0.58. 
5 [1/1] now depends  only on two independent  variables,  which we choose as 

= AF,  GGA AF] GGA /z~y,  GGA AAF-,GxGA ( A E x  - Z~F, G G A ' ~ / A V  GGA and -- - -x  = 
----X II~ " XC,X:I ----X -- XC,A~I " 

6B~ckezI takes the simple form 

AFT, BeckeII z~EGx G A  
~BeckeIl  = ~ - - x c  

A V G G A  
XC,A=I 

= ~ , ~ A ~ C A  , (70) 

which is independen t  of AF,, GGA O~ G G A .  - - - -x  and In Figs. 2 and 3 we plot 6 [1/1] 
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Fig.2 .  Shown is 6[t/~l for various values of A/~x cGA = 0.02 (dotted line), 
A/~x GGA = 0.43 (short dashes), za/~x ccA = 0.75 (long dashes). The value of o~ cGA 
=0.58 has been used for these curves. The straight solid line has a slope of -0.21. 

A p, GGA for different values of ----x . The various curves cover the range of typical 
AEGxGA values: AF_,Gx GA 6 [0.02, 0, 75] (see Table 5). Also in Table 5, we list 
the values of --AAEGxGA for a number of molecules. This quanti ty typically 
lies in the range of 0-0.7. Exceptions are F2 and 03, which show strong static 
correlation and hence large --AAEGxGA. To discuss the curves, we define an 
effective mixing coefficient a [1D] for the [1/1]-Pad4 

AEtx / 11= a"/ l(AEx _ mZ x .) + a (71) 

This effective mixing coefficient can be read off the curves in Figs. 2 and 
3. a [1/1] is s imply the negative slope of a line joining the points (0, 0) and 
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Fig. 3. The same curves are shown as in Fig. 2, but for --AAFJGx GA values between 
0.7 and 2. 

(__z~AEGxGA ' (~[1/1]). N o w  we want to obtain an approximation for the co- 
efficient multiplying AAEaxGA in Eq. 70. We expand (f [i/i] in powers of 
z~IA f~,,GGA 

- - - - X  

(f[1/l ] ---- o:GGA(1 -- ol GGA2 + 20F GA In a CcA) AA~axGA 
(i - oIGGA) 3 

J[- . . . .  (72) 

Note that the first-order term is independent of  z~FjGx GA. For Ot G G A  ---- 0 .58,  
the coefficient of the term linear in AAEaxGA in Eq. 72 becomes 0.25. This 
mixing coefficient agrees with the one obtained in Ref. [54], and falls in the 
range of the empirically determined mixing coefficients. A plot of 
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Fig. 4. The exact-exchange mixing coefficient a obtained from the [1/1J-Pad4 as a 
function of the bending parameter a aaA, 

aGGA(1 _ v~GGA~ + 2c~ GGA lnoF GA) 
a(c~vvA) -- (1 - ~OGA)a (73) 

is shown in Fig. 4. In the range of s-values of the systems in Table 5 (c~ GGA 6 
[0.42, 0.69]), the mixing coefficient depends only weakly on c~ GGA. 

It is clear from Figs. 2 and 3 that the mixing coefficient of 0.25 is an 
upper bound on a [1/1] for O~ GGA : 0.58. Therefore we expect that the quarter 
mixing in general leads to an overcorrection of the GGA atomization energies. 
This expectation is confirmed by the a = 0.25 atomization energies listed in 
Table 3. An empirical fit of the mixing parameter to the atomization energies 
of the systems listed in Table 5 would result in a lower value for a. 

For comparison, a straight line is also drawn in Figs. 2 and 3. This line 
has a slope of 0.21, which is the average of the effective mixing coefficients 
obtained from the [1/1J-Pad4 model. This value of a is very close to the 
empirical value of 0.2 used in Eq. 65, and falls in the range of empirical values 
used in Eq. 66. Furthermore, it is interesting to note that  a mixing coefficient 
a [1/1] = 0.22 is obtained by inserting the average values of a aaA, AAF-JGxGA , 

and AEGxaA into the [1/1]-Pad4 model. 
As can be seen from Table 5 and from Figs. 2 and 3, a straight line gives 

a very good approximation to the predictions of the [1/1J-Pad4 approxima- 
tion for a, in the range of physical combinations of AAEGx GA and A E  x-GcA. 
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Molecules with large values of AEGxGA , which causes a non-linear behav- 
ior of the 6 [1/1] curve as a function of AA/~xCCA , usually have quite small 
-- Z~ A f~, GG A - - - - - -x  , so that  the straight line is still a good approximation to the 
[1/1J-Pad4 model. A big value of AExGGA means that  we have little correl- 
ation contribution to the atomization process. This is typical for uncongested 
systems, where the binding electron pairs are separated from each other. 
These systems tend to have only a small --AA/~xGGA, compared to the con- 
gested molecules, since the binding electron pairs have only little overlap 
with each other and the orbital-nodality problem does not cause problems 
for the G G A  approximation to AEx [43,51]. On the other hand, molecules 

A f~,GGA with large values of --AA[~GxGA tend to have small - - - x  , so that  the mix- 
ing coefficient obtained from the linear approximation to 6 [1/1] is again very 
close to the one obtained from the [1/1]-Pad4 model. A large --AAv"GGA------x can 
usually be found in the congested systems, where the bond orbitals are in 
the same region of space and the orbital nodality causes difficulties for local- 
and gradient-corrected functionals [51]. The interacting electron pairs in con- 
gested systems give rise to a large AVc,~,=, contribution to the atomizat ion 
energy, and hence to a small Aft,  GGA These considerations show that  for a 

~ x  • 

large class of systems the fixed mixing coefficient is a good approximation to 
a[1/ll. 

In addition to the dependence on AA/~xGGA, the [1/1J-Pad4 approxima- 
A f t ,  GGA tion to AExc also depends on ----x and on the coefficient a G a a .  To dis- 

cuss these dependencies and to discuss the difference between the empirical- 
and nonempirical hybrid schemes, we consider the limits AEGxCA --+ - - ~ ,  
Ol GGA -'9" O, o r  z~EGx GA --~ 1, and AA/~xGGA --+ --oo. 

For Af:~, GGA ----x --+ - c ~ ,  the 6 [1/1] curve approaches a straight line 

lim 6[1/11 ctGGA(1 --  O~ GGA2 "JC 20: GGA In a GGA) - GGA 
= A A E  x . (74) 

,~ExGZa~-oo (1 -- oLGGA) a 

In this limit the slope of the straight line is only a function of the parameter  
a 6GA. The systems which are closest to the AExGGA -+ --c~ limit are the 
congested molecules, thus we expect that  a mixing coefficient a = 0.25, which 
is obtained by using a value of 0.58 for c~ GGA on the right-hand-side of Eq. 74, 
will work well for most  congested systems. These systems are the ones which 
show the biggest errors in the GGA atomization energies. 

In the limit AExGGA --+ 1 or a 66A --+ 0, we have negligible A V  cGA 
• C~A=I 

contribution and therefore no dynamic correlation. -AVxc,~ should drop im- 
A E G G A  mediately from - A E x  to - - - - - x  , as it does in the [1/1J-Pad6 model. 

all~l] is zero in this case. 
The [1/1]-Pad6 hybrid shows a more complicated non-linear dependence 

on AAExGGA than 6 B e c k e l I ,  and in the limit AAEGx a a  --+ --co we find 

tim = 0 . (75) 
a a # , ~ a . - + _ ~  \ AA[~Gx GA 
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The result of Eq. 75 is the one which we expect in the limit where the static 
correlation contribution to the atomization process goes to infinity. Any mix- 
ing of exact exchange must be avoided, and this is assured by the [1/1]-Pad4 
model but not by the Becke hybrid. A physical system which is close to this 
limit is 03, which is not accurately described by empirical hybrid schemes. 

9 Application of hybrid schemes 
to ionization potentials of atoms 

The motivation for the hybrid schemes described here is that the exchange- 
correlation hole in molecules, at small values of the coupling-constant ),, 
is not well approximated by local- and gradient-corrected approximations. 
The question which arises is how the hybrid schemes perform for properties 
of atoms, for instance, where the exchange hole is less nonlocal and better 
approximated by GGA than in molecules. To address this question, we study 
the ionization potentials of atoms. The ionization potential [ is defined by 

I = E i°n -- E at°m . (76) 

From Table 6 we see that GGA improves upon LSD, and furthermore that 
the inclusion of exact exchange with the [1/1J-Pad4 and the a = 0.25 hy- 
brid does not lead to a further significant improvement. This shows that the 
accuracy of the GGA is not limited by the accuracy of the small-), behavior 
of V a a A  Interestingly, the [2/2]-Pad4 reduces the mean absolute error to 

• XC,A " 

Table 6. Ionization potentials for atoms. LSD, GGA, and various hybrid calcula- 
tions are compared to experimental values. [1/1] and [2/2] denote the [1/1]-Pad4 
and [2/2J-Pad4, respectively. In the column a = 0.25, results obtained from Eq. 66 
with a =0.25 are listed. The GGA employed here is PBE. (All energies are in 
kcal/mol, leV=23.06 kcal/mol.) 

Atom LSD GGA [1/1] [2/2] exact a = 0.25 
He 560 564 564 565 567 564 
Li 126 129 128 125 124 128 
Be 208 208 207 208 215 207 
B 199 200 199 193 191 199 
C 269 266 265 262 260 265 
N 345 339 339 337 335 339 
O 321 323 318 316 314 318 
F 414 407 402 402 402 402 
Ne 510 497 493 493 497 493 
m a e  8 5 4 2 - 4 
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Fig. 5. Adiabatic connection for the ionization of B, N, and F. --AVxc,, = __(~%n 
atom -V~c, ~ ) is shown for GGA (solid line), the [1/1]-Pad4 model (dotted line), and 

the [2/2]-Padd model (long dashes). The dashed line is AVxc.~ in second-order 
density functional perturbation theory. (Energy in hartrees.) 

2 kcal/mol. To understand these findings, we plot the adiabatic connection 
for the ionization process of B, N, and F in Fig. 5. The GGA shows a small 
error in AEx for the B atom, and correspondingly only a small improve- 
ment is obtained from the [1/1J-Pad4 and the quarter mixing. The AVxc.~ 
from second-order density functional perturbation theory indicates that  the 
correlation contribution to the ionization potential is overestimated, i.e., the 
--AvGGA value in Fig. 5 is probably much too negative. The [2/2J-Pad4 -- " XC,A=I 

removes a large fraction of the error in the correlation contribution. The error 
in AEc is coming from the self-correlation error [55] made by the GGA for 
the 2p electron. This self-correlation error of the GGA can of course not be 
cured by using exact exchange. For the N atom we find again a small error in 
AEx, so that  the hybrids employing exact exchange do not improve the ion- 
ization potential. The [2/2]-Pad4 hybrid removes part of the self-correlation 
error. For the ionization of the F atom, we obtain adiabatic-connection curves 
similar to the ones obtained for atomization processes. We have a significant 
error in AEx which gets compensated by an underestimation of the correl- 
ation energy, so that AVxc,~., is probably very accurate. The [1/1]-Pad4 
improves upon GGA, and the slope of the [1/1J-Pad4 curve at A = 0 agrees 
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with the slope obtained from second-order perturbation theory, therefore the 
[2/2J-Pad@ curve lies on-top of the [1/1]-Pad~ curve. 

The hybrid schemes make the largest error for the ionization potential of 
Be. This atom has a large static-correlation energy, due to the near degener- 
acy of the 2s- and 2p levels. E GGA does not account for the static correlation 
in this system. The exact exchange-correlation hole in Be does not have the 
highly nonlocal character of the exchange-correlation hole in typical covalent 
molecules, and the error made by A b  -/GGA is fairly small. 

~ X  

10 Self-consistency in hybrid calculations 

The hybrid calculations reported here are done in a post-GGA manner. The 
densities, the orbitals, and the orbital energies from a self-consistent Kohn- 
Sham calculation are used in the subsequent hybrid calculations. Until now, 
no self-consistent implementation of hybrid schemes has been reported. Usu- 
ally the empirical-hybrid calculations are made self-consistent with respect 
to the occupied orbitals [20], but not with respect to the density. 

A self-consistent hybrid scheme, employing exact exchange, requires the 
calculation of the derivative of the orbital-dependent exchange functional 

1 /  
E~ = --~ ~ d3rd3r ' 

a 

o c t  

X I ~ ' ~ j K S * I  t 2.., ~, t r ,  ~ )¢~S( r ,  ~)12/I r '  - rl (77) 
i 

with respect to the density [56-61]. c~ in the above equation is the spin vari- 
able. 

11 Summary 

Nonempirical local- and gradient-corrected approximations to Exc are de- 
rived from the homogeneous- or slowly-varying electron gas, where the coupling- 
constant averaged exchange-correlation hole Pxc(r, r ') = f01 dA Pxc,~ (r, r') 
is localized around the reference electron. In molecules pxc(r , r  I) is often 
highly non-local and therefore not correctly described by LSD and GGA. 
As a consequence --xc~m°lecule is tOO negative in LSD and GGA. The coupling- 
constant decomposition of pxc(r, r I) facilitates the elimination of the most 
long-ranged components of pxc(r, r'), which are coming from the lower end 
of the coupling-constant integration. For small values of the coupling con- 
stant, Vxc,~ = 1/2 f dard3r ' p(r)Pxc,~(r, r') / [ r -  r'[ can be calculated from 
low-order density-functional perturbation theory [32, 33]. By interpolating be- 
tween AVxc ~ for small A and A V  GGA for large A, we obtained a nonempirical 

' - -  " X C , ; ~  

hybrid scheme, which improves upon GGA. The nonempirical- [33,54, 62] and 
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empirical hybrid schemes [17-19] rely on the accuracy of AvGGA and cases 
where A V  aaa  is seriously in error, such as for the atomization of LiF or 

" XC,~l 

the ionization of Be, remain unsolved problems. 
The remarkable success of the empirical hybrid schemes can be explained 

by starting from the [1/1]-Pad4 model, using the observation that the bend- 
ing of the A V  GGA curve, as measured by the parameter a GGA, is fairly 

' XC,A 

system-independent. For molecules with very strong static correlation the 
[1/1]-Padd interpolation for AVxc,a becomes uncertain and hybrids employ- 
ing only exact exchange begin to fail. The inclusion of second-order density- 
functional perturbation theory becomes necessary to describe the small-A 
behavior of AVxc,~ correctly. 

The nonempirical hybrid schemes described here (and also others [54,62]) 
yield energy differences by construction. The application of these schemes to 
total energies is in general not promising, since the prerequisite of an effective 
error cancellation between exchange and correlation is often not met if the 
energy has large core contributions. In the core, exchange dominates correl- 
ation. Empirical hybrid schemes (Eqs. 65 and 66) have a well-defined total 
energy; this however does not mean that the fixed mixing coefficient of about 
0.2 is appropriate for the high-density core electrons. Core electrons usually 
do not mat ter  in the empirical hybrid schemes, since their contribution to 
AExc cancels out for valence-electron processes. This cancellation is possi- 
ble because the empirical hybrid schemes are linear in the inputs Ex, E aaa  X C  1 

etc., which is not the case for the nonempirical schemes, where we have to use 
energy differences as inputs, to ensure cancellation of core contributions. An 
optimal hybrid method would combine a well-defined energy with a variable 
exact-exchange mixing. 

12  A p p e n d i x  

The calculations reported in this paper are performed with a modified version 
of the CADPAC program [63]. The electron densities are obtained from un- 
restricted Kohn-Sham calculations in the GGA approximation. Nonspherical 
densities and Kohn-Sham potentials have been used for open-shell atoms [64]. 
The experimental geometries employed in our work are taken from [65], and 
the experimental atomization energies and the zero point energies are from 
Refs. [66]. The gaussian basis sets used are of triple-zeta quality with up to 
l + 2-type polarization functions for the first- and second-row elements and 
1 + 1-type polarization functions for the third-row elements, l is the angular 
momentum number of the highest occupied orbital in the atom. 
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Abs t rac t .  At the center of density functional theory (DFT) are the proofs by 
Hohenberg and Kohn, which show that all properties of quantum many-body sys- 
tems are functionals of the ground state density, and the Kohn-Sham construction, 
in which the exchange-correlation energy is a functional only of the density. DFT 
has been widely assumed to apply directly to the static dielectric properties of 
insulators. However, in 1995, Godby, Ghosez, and Godby pointed out that the as- 
sumptions of HK do not strictly apply to the case of a crystal in a finite electric 
field, since there is no ground state, and they argued that the description of intrinsic 
bulk dielectric phenomena in a crystal requires a functional of both the bulk den- 
sity and the polarization. Here we summarize the status of recent work, especially 
a detailed exposition given elsewhere by the present author and G. Ortiz. The pri- 
mary goal is to construct a density-polarization functional theory that will provide 
a fundamental basis for the theory of dielectrics, which is formulated in terms of 
polarization and electric fields. The consequences of the ideas presented here are: 
1) it is essential to use polarization in order to describe the long wavelength limit; 
2) physically meaningful changes in polarization can be derived directly from the 
wavefunction; and 3) DFT must be generalized to a density-polarization functional 
theory in order to fully describe the dielectric behavior of materials. 

1 I n t r o d u c t i o n  

The purpose of these lecture notes is to survey recent work that brings to- 
gether two of the basic aspects of the theory of condensed matter: the descrip- 
tion of dielectric phenomena [1-4] and density functional theory [5-8]. The 
consequence of this analysis is that  in order to describe intrinsic bulk dielec- 
tric properties of an insulator in terms of only properties defined in the bulk, 
even in the static low frequency limit, the bulk density alone is not sufficient; 
in general, the state of the many-electron quantum system is a functional not 
only of the bulk density, but also of the macroscopic polarization. Since the 
exchange and correlation are in general functionals of the polarization as well 
as the density, this also leads to changes in the form of the Kohn-Sham (KS) 
[6] equations needed to describe polarized dielectrics. Since this is a contro- 
versial idea for a conference on density functional theory, it is important  to 
review the ideas and state clearly the particular circumstances in which it is 
argued that the density is not sufficient. In the opinion of the author, this 
exercise is especially valuable because it requires a thorough analysis of the 
assumptions behind density functional theory, as well as the problems as- 
sociated with the theory of dielectrics, which deepens our understanding of 



92 Richard M. Martin 

both areas. This summary is based primarily upon work with G. Ortiz which 
is described in more detail in a set of papers, [9-12] especially a paper by 
Martin and Ortiz to be published in 1997 which will be referred to here as 
MO [12]. 

The recent episode in this drama was initiated in 1995 by Gonze, Ghosez, 
and Godby [13] (GGG), who proposed that the case of an infinite periodic 
insulating solid in an electric field is an interesting example where the "origi- 
nal proof of Hohenberg and Kohn does not apply". They concluded that  the 
state of the crystal in the presence of an "applied perturbing potential is not 
a unique functional of the periodic density change; it depends also on the 
change in the macroscopic polarization." The reason that the original proof 
of HK is argued to be invalid is because there is no lowest energy ground 
state for a system in the presence of a constant electric field, which decreases 
indefinitely. This is a well-known catastrophe that occurs for any Coulomb 
system whose particles are allowed to move in infinite space [14-17]. Since 
the HK arguments were cast in terms of ground state densities, at the very 
least this leads to the need to revisit the proofs of HK and KS, and to devise 
an approach that  is clearly applicable to dielectric phenomena in crystals. 

Furthermore, this argument connects directly to the basic theory of di- 
electrics. In general the state of an extended system in the presence of an 
electric field is a metastable state, and theoretical formulations which claim 
to be rigorous must take this into account. In fact, there is a long history of 
difficulty in defining the polarization in an infinite crystal, [18-24] and only 
recently has the formalism been developed to determine the macroscopic po- 
larization directly from the wavefunction for the electrons [25,9,24,26, 10]. 
Thus it is essential to review the theory of polarization in dielectrics to es- 
tablish the formulation. 

The proposal that  the HK functional is intrinsically a function of the po- 
larization has led to considerable controversy, [27-29, 10,30,31] with claims 
[29] and counterclaims [10,30,32] about the nature of ground state correla- 
tions in insulators , and a discussion of the problems encountered in taking 
the infinite system limit within the framework of the Kohn-Sham (KS) the- 
ory [31]. This leads us to a reinvestigation of the nature of the fundamental  
quanti ty that  determines the energy of the many-body electron system - the 
exchange-correlation hole. 

A final comment is needed to set the stage for the present discussion. The 
present proposals are NOT a refutation of the HK analysis in cases where 
it should apply. In fact, one of the important  results of the recent work is 
a clarification of the situations where it should apply. The primary goal of 
the new formulation is to describe the intrinsic bulk properties of extended 
insulating systems in terms of only the bulk electron density and the bulk 
polarization. The distinction from the original work of HK is that they con- 
sider the density of the entire system including surfaces, which leads to great 
difficulties in constructing a theory of the intrinsic bulk properties of macro- 
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scopic bodies that  is manifestly independent of the size, shape, and state of 
the surface. The present analysis in terms of bulk density and polarization is 
a natural way to accomplish this goal [12]. 

The approach taken in this paper is to describe first the nature of polariza- 
tion in insulators and to present the reasons why changes in polarization are 
measurable, physical quantities associated with the bulk of the body, which 
are independent of the density in the bulk. We then describe the modern the- 
ory of polarization which relates the changes in polarization directly to the 
bulk wavefunctions for the electrons. This is followed by a survey of density 
functional theory and the modifications that must be made in order to de- 
scribe the intrinsic properties of dielectric phenomena in extended materials. 
Finally, we discuss the modified form of the KS equations, which involve a 
non-local operator in addition to the usual local potential. 

2 D i e l e c t r i c  T h e o r y  a n d  P o l a r i z a t i o n  

2.1 W h y  Is P o l a r i z a t i o n  I m p o r t a n t ,  b u t  P r o b l e m a t i c  ? 

In the classical theory of dielectrics it is well known that  it is preferable 
to write the electrostatic energies in terms of the polarization and electric 
fields, rather than charge density and potentials [1,2]. The energy is written 
as the energy of a reference state of the material plus changes due to external 
fields. The purpose of this section is to describe the formulation in terms of 
polarization, along with the corresponding expressions in terms of the density. 
The primary points are: 1) the difficulty in defining the desired quantity - the 
polarization - directly from the density, and 2) the need to have a formulation 
which makes it possible to determine changes in polarization directly from 
the quantum mechanical wavefunctions. This sets the stage for the modern 
quantum theory of polarization and the special role of polarization in the 
functionals that  will be discussed later. 

Although electric polarization plays a central role in the dielectric phe- 
nomena of matter,  formulation of the polarization in terms of the nuclei and 
electrons that  make up the material is often considered only in simplified 
models. If the material is modeled as a sum of neutral polarizable units, 
there is no fundamental problem: the polarization is the sum of the dipole 
moments per unit volume and each dipole moment is well defined. This is the 
model presented in i shc ro f t  and Mermin [3] (see Chapter 27) or Kittel [4] 
(see Chapter 13) and is the basis for the famous Clausius-Mossotti relations 
[2-4]. This is illustrated in Fig. 1, where is shown a collection of isolated units 
(molecules) each of which is polarized by external fields and microscopic fields 
due to the neighbors. The key feature of the model is that  one can relate the 
dipole moment of a unit to its intrinsic properties including its response to 
local electric fields acting on the unit from all sources outside the unit. 

However, a quantum mechanical view of extended mat ter  is quite differ- 
ent, at least at first sight. All the electrons are equivalent and an electron 
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Fig. 1. Model for polarizable units or molecules in a dielectric assumed to be iso- 
lated with no flow of charge between the units, as in the Clausius-Mossotti model. 

cannot be assigned to a given molecule or unit cell of a crystal. The charge 
density of the electrons is a continuous function of position and there is no 
way to uniquely "cut" the density and derive the dipole moment of a cell [20]i. 
This is illustrated in Fig. 2, which shows one possible division of the density 
in to "bulk" and "surfaces". However, any displacement of the dividing lines 
within the bulk region is an equally good definition. In a solid with no center 
of inversion, there is no unique choice [20]. 

The polarization P is the average value of the polarization density field 
P (r), which satisfies the equation 

V .  P (r) = - n ( r )  , (1) 

where n(r)  is the charge density of the system. In a finite system, if P (r) 
vanishes outside the sample, it is straightforward to show that P is the dipole 
moment of n(r) ,  

lfn P = ~ d 3 r P ( r )  = ~ darrn(r) . (2) 

Thus, P is uniquely determined by n(r)  and the condition P (r) = 0 outside 
the volume of the sample 12. 

In an extended system, however, the interpretation of this integral suffers 
from difficulties. In particular, there has been much debate and discussion 
[18-24] about whether or not it is possible to uniquely define a "macroscopic 
bulk polarization" which is a property only of the interior of the material 
independent of surface termination. The difficulty originates in the factor of 
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D e n s i t y  n ( x )  

~ ft  S u r f a c e  _ _ B u l k  R e g i o n  ~. _ R i g h t  S u r f a  

Fig. 2. Sketch of density in a finite crystal. The central section is representative 
of the bulk and is periodic. The vertical lines indicate one division of "bulk" and 
"surface"; however, this in completely arbitrary and it is impossible to draw unique 
boundaries which divide "bulk" and "surface" in a crystal which does not have 
inversion symmetry. 

the position vector r in the definition above: a charge distribution on the 
boundary  of the finite system can lead to a contribution to the polarization 
per unit volume P which does not vanish in the thermodynamic  limit in 
which the finite system is taken to infinite size. This corresponds to the fact 
that  the total  polarization of a finite sample depends upon the charge state of 
the surfaces; therefore it cannot be a bulk property. It  is impossible, strictly 
from knowledge of only the density in the bulk, to uniquely define an intrinsic 
bulk polarization or changes in the bulk polarization between two states of 
the material .  

There is an additional quanti ty needed to determine the change in bulk 
polarization - the integrated polarization current that  flows through the bulk. 
As shown years ago, [20] the change in polarization between any two physical 
states A p  is uniquely given by the change in dipole moment  of a unit cell 
plus a surface integral which physically is the contribution of the polarization 
current which flows through the cell. This is illustrated in Fig. 3, which shows 
the change in density between two states including charge flow through each 
unit cell in the bulk. For any particular geometry of the sample there is a 
relation of the integrated current to the charge accumulated at the surfaces; 
however, it is much more convenient to consider the polarization current itself 
rather than the surface charges which depend upon the detailed geometry. 
The quanti ty A p  was shown to be independent of the choice of cell; however, 
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Change in Density n(x) 

Current Current 

Bulk Region ~ Right Surfs 

Fig. 3. Sketch of the change in density of Fig. 2 due to a change in the Hamiltonian, 
e.g., if atoms are displaced. In addition to changes in the periodic density in the 
bulk, there is a net current which flows through the bulk. Only if the current flow is 
taken into account is the total dipole moment of the finite crystal, and the average 
polarization given correctly. 

no prescription for calculating the surface integral was given [20]. The key 
point for our purposes is that  the integrated current is a physically measur- 
able quantity. It is independent of the density within the bulk and it must be 
considered as a physical variable needed to fully specify the state of a dielec- 
tric. In fact, the formulation of the change in polarization as an integrated 
current is exactly the approach used in describing the response of a dielectric 
to transverse fields, [33] and is the basis for the new formulation [25,24, 9,10] 
in terms of a Berry's phase, which is described in section IIc below. Let us 
now summarize some of the reasons why it is preferable to describe dielectrics 
in terms of polarization and electric field rather than density and potential 
[1,2]. The basic reason is that  the electric field is the measurable, physical 
quantity which causes the displacement of charge, i.e., polarization in a re- 
gion. The physical meaning of the polarization density and the reason why 
it is the appropriate variable in insulators has been stated clearly by Landau 
and Lifshitz [1]. The polarization density field defined by Eq. (1) embodies 
the property that  in an insulator charge cannot flow over large distances. 
A change of P ( r )  in a localized region (i.e., 6P(r )  = 0 outside the region) 
corresponds to a change in charge density only in that  region and it is simple 
to show using Eq. (1) that the integrated charge in the region is conserved, 
fdr ~n(r) = 0, i.e., local changes in P ( r )  describe local polarization of the 
charge density. Furthermore, the change in the electric dipole moment of the 
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finite region is well-defined and is given by f dr r 3n(r). In contrast, in met- 
als the charge in a region can vary because charge can flow over macroscopic 
distances to fully screen any potential, and the density is the appropriate 
variable. 

2.2 Total Energies in Coulomb Systems 

In general the energies in Coulomb systems are very non-local functionals of 
the density, since the potentials and electric fields depend upon the charge 
density everywhere. In the KS theory [6] this is recognized in the Hartree 
term, which is explicitly left as the full non-local expression. We revisit this 
issue, however, because in the later sections it is argued that  not only the 
Hartree term but also the exchange and correlation are in general expected to 
have very non-local dependence upon the density. If one considers a crystal as 
a large finite system and derives its properties by taking the thermodynamic 
limit, then the electric field inside an insulating crystal will depend in detail 
on the charges on the surface of this finite system, even in the thermodynamic 
limit. This can be seen by considering the total Coulomb energy of the charge 
density nT(r)  = n(r) + n+(r)  (where we consider together the Coulomb 
energies of the electrons and the positive fixed charges, the nuclei, in order 
to have well-defined energies per particle in the thermodynamic limit). The 
potential terms involving Coulomb interactions can be written in either of two 
forms involving either potentials and densities or polarizations and electric 
fields: 1/ 1/ 

Eco~l = -~ dr Vint(r)nT(r) = --2 dr E ( r ) .  P ( r )  , (3) 

where E(r )  is the conventional symbol in dielectric theory for the total inter- 
nal electric field, related to the potential by VV~nt(r) = - E ( r ) .  Also the total 
internal field can be written as E = D + EH, where D(r )  is the electric field 
due to external charges Vve~t(r) = - D ( r ) ,  and EH(r)  is the electric field 
due to the electronic charge distribution, VVH(r) = --EH(r) .  This is consis- 
tent with the definitions in density functional theory where one considers the 
potential external to the electrons which is due to the nuclei; nevertheless 
the long range part of the "external" potential includes both nuclear and 
electronic contributions since the potential is convergent only if the system 
is neutral [34]. 

The key point for our purposes is that the total energy of an insulator in 
general involves long wavelength polarizations and electric fields. Of course, 
such terms are absent in a metal since there can be no average electric fields 
in equilibrium. This is discussed in great detail in MO [12] where we consider 
the Fourier components of the density n(q) and the polarization P(q) .  In the 
q -+ 0 limit there is a term 

Etot = -J2  E~,~c • Pm~c + . . .  (4) 
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where ~2 is the total volume of the system, Emac is the macroscopic electric 
field and Pmac is the macroscopic polarization density. The other terms de- 
noted by . . .  include all the short wavelength and non-Coulomb terms. This 
equation is useful because the polarization density P(q) is regular at the 
origin and Pmac is the limit, which is well defined. On the other hand, the 
density n(q) = q .  p(q)/q2 is non-analytic as q -+ 0. As long as one works 
at finite wavelength one can use either n(q) or P(q); however, in the limit 
q -- 0 the polarization is the macroscopic value whereas the density n(q) = 0 
is fixed by charge neutrality. 

The conclusion of this section is that  polarization is the key quantity in 
dielectric theory which makes possible a local, causal description of dielectric 
phenomena instead of the extremely non-local relations that occur if one 
attempts to describe the effects in terms of the density alone. Although the 
macroscopic polarization in a region is not determined solely by the density 
in that  region, changes in the polarization are determined by the charge 
density in the region plus integrated current flow through the region. Finally, 
the total energy of the system depends upon the average polarization if there 
is an average electric field in the region. 

2.3 Polarization, Berry's Phases,  and Wannier-Like Functions 

Recently [25, 24, 9], there has been a breakthrough providing a new approach 
for calculation of polarization in crystalline dielectrics. The new approach 
has been elegantly formulated using concepts of topology and differential 
geometry [35] leading to a Berry's phase [36] formulation. This was realized 
by King-Smith and Vanderbilt [25] who built upon earlier work of Thouless 
and coworkers [37,38]. A review has been given recently by Resta [24], a 
short summary by Martin and Ortiz [10] and the extension to interacting 
many-body systems has been given by Ortiz and Martin [9]. 

The authors of Refs. [25,24] consider insulators in the single-body, mean- 
field approximation, where the integrals over filled bands are over the com- 
plete Brillouin zone and they take advantage of periodicity in k space. (It 
has also been shown [9] that the polarization in a full many-body problem 
can be expressed by formulas which have similar structure; however, the 
independent-electron formulation is sufficient to illustrate the ideas). Con- 
sider the change in polarization when a parameter of the Hamiltonian, A, is 
changed adiabatically (e.g., when atoms are displaced), always requiring that  
the macroscopic electric field vanishes. The change in polarization is found 
from 

fo OP Ap  = d,~ 0---~ (5) 

The polarization involves also an integral over the Brillouin zone (i. e., over all 
possible Bloch boundary conditions), and the wavevector k can be considered 
as a parameter in the gauge-transformed Hamiltonian, Hk(A), whose eigen- 
functions are the strictly periodic part of the Bloeh functions uk~,~, where n is 
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the band index. Thus the final expression involves summation over occupied 
bands and integration over k and ~. King-Smith and Vanderbilt [25] showed 
that the adiabatic perturbation expressions for the change in polarization can 
be cast in terms of a Berry's phase [36] involving the phases of the eigenfunc- 
tions, with k and ~ playing the role of the slowly changing parameters in the 
approach of Berry. The resulting expression for the electronic contribution to 
A p  of a spin-unpolarized system has the form [25] 

/o 1 A P j  = -lel Im z dk d)~ ~ \ Okj 0)~ / ' (6) 

where the sum is over all filled bands with j representing a particular crystal 
direction. By defining a reduced dimensionless vector ~ --- ~--k (where a has 2r 
dimensions of length), the right hand side is easily shown to be a factor 
2ea/volume (where the factor of 2 is included if it is assumed [25] that  the 
system is non-magnetic and both up and down spin electrons contribute 
equally) multiplied by a dimensionless quantity which is gauge-independent 
and is precisely the Berry's phase. Using Stokes's theorem this integral can 
be converted into an integral along the closed path defined as the boundary 
of the region of (~,)~) space, as shown in Fig. 4. 

J 

Surface Wannier Function 

Density n(X~ulk Wannier Function 

Fig. 4. The change in polarization is given by the surface integral over the area 
described by f d)~dk, which can be converted into a line integral around the contour 
shown. By particular choice of gauge the contributions of the integrals over ,k at 
the zone boundaries cancel, and one is left with only the integral over k at ,k = 1 
minus the integral at A = O. 
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Although the complete expression depends upon the path in (~, A) space, 
[9] a choice of phases of the wavefunctions as a function of k so that  = 
exp[iG,  r] u~+G,,~(r) (where G is a reciprocal lattice vector) leads to the 
simplest form dependent only upon the end-points A = 0 and A = 1, with, 
however, the disadvantage that the Berry's phase is uncertain by any multiple 
of 2zr. The result including a factor of 2 for spin for APj  is [25,24, 10] 

•-21el/B APJ = *(-~)3 z d k E [ ( u ~ =  1 IOkju~=l}- (u~= ° IOkjU~°)] 
f l  

-2H 
+(integer) × - -  , (7) 

area 

where the term area is the cell volume divided by the length of the unit cell 
in the direction j ,  which is the area of a cell surface perpendicular to the 
direction j.  

King-Smith and Vanderbilt [25] showed that one can derive practical ex- 
pressions for the Berry's phase in terms of differences of phases at discrete 
values of k, which provide unique results even though they are derived from 
the phases of wavefunctions found by a standard diagonalization routine in 
which the phases are arbitrary. This paradoxical result stems from the fact 
that  the only requirement on the phases of the periodic parts of the Bloch 
functions ul~,~ (r) is  that  they obey the relation ukX,~ (r) = exp[iG.r] u~+G,,~ (r). 
This can be easily accomplished merely by defining the function u~,(r)  for 
k on one boundary of the Brillouin Zone to be the function actually found 
at the point k + G on the opposite boundary multiplied by the phase factor 
exp[iG.r]. This provides an expression for the change in polarization between 
two states which is unique except for the addition of any integral multiple of 
27r in the Berry's phase, as discussed before. For a continuous change, such as 
the induced polarization when atoms are displaced, uncertainties by possible 
integral multiples of 2zr can be avoided by defining small enough changes 
(changes in the value of )~) where one always knows that the change in polar- 
ization is given by the smallest value, i.e., with the integer equal zero. This 
effectively defines the path for the A parameter. 

Note that  the geometric Berry's phase is nonzero only if the periodic func- 
tions Ul~ . are complex; this occurs if there is no center of inversion, which 
is of course exactly the condition that there may be a non-zero polarization! 
Hence, the change in macroscopic polarization between two different insu- 
lating states can be regarded as a measure of the phase difference between 
their initial and final many-body wavefunctions (which, in all mean-field ap- 
proaches, are Slater determinants of single-body functions uk~). The new 
formulation is in fact related to the integrated current that  flows through the 
insulator illustrated in Fig. 2, which is apparent since it involves the phases 
of the wavefunctions. 

The integer multiples of 2zr in the Berry's phase have an interesting inter- 
pretation. They correspond to the transport of an integer number of electrons 
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/ a  
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Fig. 5. Sketch of typical densities of localized Wannier-like functions which describe 
the occupied electronic states of an insulator. There is one function per cell per 
band; in the bulk the Wannier-like states are translations of the one shown W ( r + R )  
and in the surface regions there are different functions. So long as the bulk is 
insulating, the surface functions are localized to the surface and decay exponentially 
into the bulk, independent of the nature and perfection of the surface. The change 
in polarization is given by the average change in dipole moment of each function per 
unit volume. In the thermodynamic limit the contribution of the surface is always 
negligible and the change in macroscopic polarization in given by the change in 
dipole moment of the bulk Wannier-like functions. 

across the entire crystal, which of course leaves the bulk invariant. This is 
the aspect of the t ransport  that  was emphasized by Niu and Thouless [38] 
which leads to quantized charge t ransport  in an insulator. In contrast, the 
work described here emphasizes the changes in the Berry's  phase by fractions 
of 2~r, which is the physical polarization of the crystal. 

There is another (simpler to describe) interpretation of the expressions for 
the polarization. King-Smith and Vanderbilt [25] also showed that  a physical 
understanding of the Berry 's  phase expressions can be gained by transforming 
to a basis of localized Wannier-like functions, which is possible in an insulator. 
The total  density can be expressed in terms of overlapping densities of the 
Wannier-like functions, 

nit) = Z IW /r - m l  2 , IS) 
R 

which is illustrated in Fig. 5. The important  result for our purposes is that  
the change of polarization is simply the change in dipole moments  of the 
Wannier-like functions, 
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zSP - f2c~ul ~ .  / d3r rzStWi(r)] 2 . (9) 
1 

Even though electrons are indistinguishable, the fact that  each one-body 
Wannier-like function can accept only one electron (of each spin) means that  
the charge of each is fixed and it acts as a polarizable object. The essential 
feature added by the expressions in terms of the geometric quantum phase, is 
the proof that  the change in dipole moment of each neutral set of Wannier-like 
functions and nuclei in one unit cell is gauge-invariant and unique, despite the 
well-known non-uniqueness of Wannier functions themselves [39]. [Note: it has 
been pointed out to the author by D. Vanderbilt that a proof of uniqueness of 
the total dipole moments of the Wannier functions is contained in the 1962 
article by Blount [39].] Therefore, this work provides a rigorous derivation 
of the Clausius-Mossotti-type polarizability models, like those discussed in 
textbooks (although the building blocks have a different meaning), [2, 1,3,4] 
and provides explicit formulas for actual calculations. Furthermore, Nunes 
and Vanderbilt [40] have shown that the formalism of constrained "cut-off" 
Wannier-like functions developed for the "linear scaling methods" [41,42] 
can be used to carry out calculations of polarized crystals in the presence of 
macroscopic external electric fields. 

In summary, changes in bulk polarization between two states of a crystal 
can be calculated directly from the wavefunctions in the bulk, using either 
the Berry's phase formulation in terms of Bloch eigenstates, or in terms of 
Wannier-like functions. The changes are physically measurable since they are 
related to the integrated charge flow due to bulk currents. 

2.4 Further  Issues  in Die l ec tr i c s  

For a homogeneous electric field which is finite (but weak enough that  it 
does not cause breakdown) the state of an infinite crystal described by the 
dielectric theory is metastable [14-17]. The spectrum of energies is continuous 
and non-bounded below [16]. Nevertheless, the polarizability can be defined in 
a perturbation theory expansion about the zero-field ground state. Although 
the formulas are asymptotically convergent, [17] they are well-behaved at 
any finite order. Thus the ground state is stable about the minimum, but at 
any finite.field the state described by dielectric theory is metastable, with 
a lifetime which is very long for typical field strengths well-below dielectric 
breakdown [17]. 

For independent electrons in an electric field, stable solutions for the long- 
lived states can be derived [17] by restricting the Hilbert space of wavefunc- 
tions to a subspace which is "slightly deformed" in a continuous manner 
from a zero-field band subspace [17]. Martin and Ortiz [12] have proposed 
that similar constraints make the full interacting many-body system stable, 
and have used this in the formulation of functionals of polarization at fi- 
nite fields. However, to the knowledge of the author, such a formulation has 
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never been proven rigorously for the full many-body problem. The logic for 
this assumption is very similar to the description of the insulating state by 
Kohn [43] in which the state is described for many non-interacting electrons, 
and the basic properties are proposed to carry over to the state of many 
interacting electrons assuming adiabatic continuation. 

3 A s p e c t s  o f  D e n s i t y  F u n c t i o n a l  T h e o r y  

3.1 T h e  H o h e n b e r g - K o h n  ( H K )  T h e o r e m s  

Density functional theory [5-8] (DFT) is the foundation of much of current 
research on the electronic properties of condensed matter [44] and is widely 
used in studies of molecules and other finite systems [7,45]. The most cel- 
ebrated tenet of DFT is that the ground state density n0(r) is in principle 
sufficient to determine all the properties of the many-body system of interact- 
ing electrons when there is time-reversal symmetry. In this section we review 
salient aspects of DFT as derived by Hohenberg and Kohn (HK) and others 
in recent decades [7, 8]. We focus particularly upon aspects that relate to the 
role of polarization discussed in the present paper. The starting point of DFT 
is that  the total ground state energy of a finite system of N non-relativistic 
spin-unpolarized electrons can be written in terms of an intrinsic Hamiltonian 
for the electrons plus the effects of an external potential, v~xt, 

1 f i  Vi2l~p0 ) + (¢z0lV~_~lkp0) , (10) Etot ~ dr Y e x t ( r ) n 0 ( r )  n u (k~01 - 

i = 1  

where k~0 is the ground state wavefunction of the many-electron system, the 
second term is the kinetic energy and the final term is the expectation value 
of the electron-electron interaction. 

The reason why the density has a special role in the formulation of HK 
is that  the total energy of the system depends upon effects external to the 
electron system only through the integral of the product of the density n0(r) 
and the external potential vext(r) which is the first term in Eq. (10). Using 
only this information, HK showed that,  in a finite system of a fixed number of 
electrons, two different external potentials differing by more than a constant 
cannot lead to the same ground state density. Thus, there is a one-to-one 
correspondence between the ground state density n0(r) and the external po- 
tential vext(r), and the complete Hamiltonian is uniquely specified by the 
density, since all other terms in the Hamiltonian are known for a given type 
of particle. Furthermore, they showed that the construction of a DFT is pos- 
sible in principle based upon the proof that there exists a universal functional 
of the density F[n(r)], independent of vext(r), such that the expression 
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f 
E[n(r)] -- ] dr v~,t(r)n(r) + Fin(r)]  , 

has as its minimum value the correct ground state 

(11) 

E[n0(r)] : Eta : mnin E[n(r)] • (12) 

The functional F[n(r)]  : T[n(r)]+(V~_~) is the HK functional for the internal 
energy, which is determined by the density alone. 

3.2 T h e  K o h n - S h a m  A n s a t z  

Essentially all actual DFT calculations are based upon the ansatz of Kohn 
and Sham (KS), [6] who separated the HK functional into three parts, 

F[n(r)]  - Tina[n(r)] + EH[n(r)] + E.c[n(r)] . (13) 

The first term is the kinetic energy of independent fermions with mass me 
( rn~ : l  in Hartree atomic units) and density n(r);  the second is the average 
Coulomb Hartree energy, which is easily expressed in terms of the density 

EH[n(r)] = ~ f ] drdr' n(r)~r l~_ rqn(r') ; (14) 

and the third is defined to be the sum of all remaining terms which involve 
exchange and correlation 

E.~[n(r)] : Tb(r)] - T{~d[n(r)] + (V~_~) -- EH[n(r)l , (15) 

The ansatz made by KS is that the exact density can be represented by 
the density of non-interacting electrons (that is, interacting v-representable 
densities are assumed to be also non-interacting v-representable. Although 
this has never been proven or disproved in general, we will continue with the 
assumption that the density can be represented in this way.) If the ground 
state of the non-interacting system is non-degenerate, then the density is 
given by a sum over one-body occupied orbitals, n(r) = }--~ieoccupied ]~p/(r)12, 
and the kinetic energy is found from the orbitals without explicitly construct- 
ing a functional of the density. 

The genius of the KS ansatz is that the first two terms in Eq. (13) can 
be calculated exactly by the usual techniques of independent electron theory 
without ever explicitly constructing the functional, and the final exchange- 
correlation (x-c) term E~c[n(r)] is more amenable to physical interpretation 
and approximations than the original HK functional. The key points of the 
KS approach for our purposes are that 1) the exact x-c energy is expressed as 
a functional of the density alone, and 2) it is advantageous to formulate the 
theory in such a way that the functional relationships are as local as possible. 

So long as the x-c energy E~c is a functional only of the density n(r) ,  then 
KS showed that the (stationary) minimum energy solution can be found by 
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the variational principle. Since the density is determined by the orbitals, the 
practical form for the variational equations is, 

_ 
6 ¢ ; ( r )  6 ¢ ; ( r )  

f (~(EH+E.¢)  ) 6n(r') 
+ dr '  k -~n-(-~ + ve~t(r') 6¢;(r~ -- 0 , (16) 

subject to the orthonormalization constraint (¢~1¢j) = 5~j. This leads to the 
self-consistent independent-particle SchrSdinger-like equations, 

[-IKs¢i(r) = ( - 1 V 2  + Vgs(r)) ¢i(r) = ei¢i(r) , (17) 

in which each non-interacting KS "electron" moves in an effective local po- 
tential VKs(r) = v~t(r)  + VH(r) + V,¢(r), where VH(r) and V,e(r) are the 
Hartree and x-c potentials. Thus the effective potential V/(s(r) is a simple 
local function of position. Knowledge of the x-c functional E,~[n] would lead 
to the exact ground state energy and density of the many-body system in 
term of the simple non-interacting electron KS equations. 

4 E x c h a n g e - C o r r e l a t i o n  H o l e  

The exchange-correlation (x-c) energy is the key functional in the KS ap- 
proach that  takes into account the fermion character and the correlations 
among the electrons: calculations using this approach are accurate only to 
the extent that  the functional accurately captures the essential features of ex- 
change and correlation in the actual system being considered. In this section 
we summarize ideas on the nature of exchange and correlation, the definition 
of the x-c energy within the KS approach, and expected dependence upon the 
density. The main purpose of this section is to show that  in an insulator one 
expects a very-non local dependence of the x-c energy upon the density, much 
more non-local than in a metal. These arguments are given in more detail in 
MO and are also discussed in a simpler physical context in a comment [111 
and reply [32] published in Physical Review Letters this year. 

The E~c[n(r)] functional is directly related to the ground state wavefunc- 
tion, at least in principle, by the Levy constrained search method [46,47] in 
which one searches over all antisymmetric, normalized N-particle functions 
which yield the prescribed density n(r) (n(r) = N ~-~ f dxN-1lkP(r, ~r, xN-1)I2 
is assumed to be only N-representable; x = (r, ~r), and ~r represents a spin 
variable), and minimizes ( _ !  ~i~_t V] + Ve-e), i.e., 2 

N 

E.c[n(r)] = min (kP I -  1 
i = 1  

- Tina[n(r)] - EH[n(r)] , (18) 



106 Richard M. Martin 

where T~,~d[n(r)] is the independent particle kinetic energy which is a func- 
tional of the density [6]. The x-c energy can also be formulated [48-50,7] in 
terms of potential energies only by a coupling constant integration. In this ap- 
proach E,~ is given directly by integrating the derivative of the total energy 
with respect to the interaction strength Ae 2 using the Hellmann-Feynman 
theorem. This is done by considering the set of Hamiltonians HA with the 
electron-electron interaction scaled by a factor of ), which increases from 0 to 
1, zero coupling strength representing the non-interacting KS electrons. The 
ground state density is required to remain constant as $ is varied, which is 
accomplished by varying v~,t(A). The resulting expression is [7] 

where 

1 fdu  Ez [n(r)] = / dr n(r) u) 

jr0 
1 

n~c(r , r  + u) = d~ n~c,A(r,r + u) = 

n(r)  la (r)a (r + u)l 2) - (20) 

and 5~t(r) = f i ( r ) -  n(r)  is the density fluctuation operator. Note that 
n~c(r,r + u) is a correlation function giving the probability of finding an 
electron at r + u if there is one at r; however, it is not the x-c hole at the 
actual value of e 2 but is the average of the correlation function defined by 
the right-hand side of Eq. (20) for e 2 ranging from 0 to its actual value with 
the density n(r)  kept constant. The wavefunction ~P0 ~ is the ground state of 
the Hamiltonian HA with density n(r).  

The dependence of the x-c hole nz~(r, r + u) and the energy Exc[n] upon 
the density n(r)  can arise from two sources. One is the implicit dependence 
upon the density through the correlations and the Pauli exclusion principle 
among the electrons in the many-body wavefunetion in Eq. (20) as a function 
of )t. This must be calculated from the many-body function over the range of 
the x-c hole, i.e., the range of u over which nzc(r, r + u) must be explicitly 
considered. 

In addition, however, E~[n] may depend upon the density through effects 
of potentials (or electric fields) generated by the density. The key point for our 
purposes [12] is that  in an insulator the properties at any point can depend 
upon the density at distant points through long-distance electric fields or 
potentials. The longest range effects are due to slowly varying !ong-range 
electric fields. Of course, the wavefunction of the many-body electron system 
is affected by an electric field, and so we expect the shape of the average 
x-c hole n ~ ( r ,  r + u) to be modified (polarized), with consequent changes in 
the x-c energy due to changes in the angle-averaged dependence of the hole 
upon the distance lul. Thus we expect a very non-local dependence of E~c[n] 
upon the density. Note that this does not require the x-c hole itself to have 
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any anomalous long-range behavior as was proposed by Resta [29] (see the 
comment [ll] ). There are no such effects in a metal since static electric fields 
must vanish in its interior. 

In summary, we have established that in an insulator the exact x-c energy 
is expected to be an extremely non-local functional of the density. This unde- 
sirable situation is the basis for introducing a different way to approach the 
problem in terms of both the density and the polarization which is discussed 
below. The reasoning is that  the x-c hole is expected to be a function of 
the polarization of the wavefunction in the local region, giving a more local 
description. 

5 Density-Polarization Functional Theory 

The important  prerequisites for formulating the Density-Polarization Func- 
tional Theory (DPFT) are now in place. We will give here only a summary 
with the details left to the more complete discussion in MO [12]. D PF T  was 
first proposed by GGG [13] and the present description is consistent with 
their initial description. Note that one result is a derivation of important  
cases where the original analysis of HK applies directly to the bulk, i.e., 
the bulk density is sufficient, even though the description of an insulator in 
the general case requires a functional not only of the density but also the 
macroscopic polarization. 

We consider the case of a crystal and we wish to formulate the theory in 
a way that  is valid in the thermodynamic limit. One procedure is to consider 
finite wavevectors, i.e., spatially varying density n(r)  and polarization density 
field P ( r ) .  As long as there is no average polarization, then it is straightfor- 
ward to work with either n(r)  or P ( r ) ,  since they are related by Eq. (1). 
However, if we take the limit of long-wavelength variations, P ( r )  approaches 
the macroscopic polarization P~ac whereas the density is non-analytic since 
the average value is fixed to be zero by charge neutrality. It is in the limit 
that  the formulation in terms of both n(r) and Pm~c is essential. 

The most important  point is that in general in dielectrics there is a term in 
the energy which involves the macroscopic polarization P ~  (see Eq. (4)), in 
addition to other terms which involve the short wavelength variations of the 
density. Using exactly the same reasoning as in the original HK arguments, 
it follows that  the internal energy of the electrons must be a functional of 
the polarization. As discussed in MO, section V, one must be careful to 
treat properly all the Coulomb terms in the limit and one must restrict the 
wavefunction to a space in which the solution is stable. The approach of MO 
leads to the formulation in which the wavefunctions ~ must be the lowest 
energy states of the auxiliary system Hamiltonian 

N 
1 

: + + a Emac  m.c, (21) 
i = l  
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for a given generalized Bloch condition k on the boundary of the domain 
/2, and where V~t = ~ G # o  V~,t(G)exp(iG. r). In Eq. (21) Pm~¢ repre- 
sents a "polarization operator" that is bounded and whose precise definition 
depends upon the order (O(E~a~)) of the "deformed" subspaces generated 
by the recursive algorithm of Nenciu [17]. This procedure defines the map 
(V~xt; Ernac) ~ gr, and where kP represents the metastable solution. 

In order to fully generalize the HK theorems to the present problem, we 
must show that there is a map (n(r);Pm~) -+ (~/~t;Emac), which tells us 
that knowledge of n(r) and Pm~ completely determines the "Hamiltonian" 
of the system. We must also show that the "ground state" expectation value 
of any observable is a unique functional of the periodic density and a function 
of the macroscopic polarization. This is accomplished [12] by showing that, 
for each Bloch boundary condition k, two different external potentials V¢~t 
differing by more than a constant lead to different "ground states" Ok, and 
that two different macroscopic fields E~¢  lead also to two different k~k's using 
reductio ad absurdum. Consider the ground states k~k and k~£ of two different 

Hamiltonians HN and ~r~q, which involve respectively external potentials V~t 
and V:x t and macroscopic fields E ~ c  and E ~ .  We assume that kPk :~ ~P£, 
but that nk(r) = n~,(r) and Pk,rn~c = P'k,mac" Then, 

implies 

(22) 

Eo(k) < E~(k) + / d r  nk(r) (~7~:~t(r)- ~3~t(r)) 

+ / 2  (E~ac - Emac) • Pk,mac" (23) 

But using the corresponding argument for /~(k)  

/~(k)  </~0(k) - / d r  nk(r) (9~t(r) --~:~t(r)) 

- /2 (E~ac - Emac)' Pk,mac , (24) 

which leads to the obvious contradiction 

E~(k) + E0(k) < E~(k) + E0(k) , (25) 

meaning that (nk(r);Pk,m~¢) -+ kPk for each boundary condition specified 
by k. Finally, we can derive the generalization of the HK theorem by not- 
ing that the density n(r) and the polarization Pm~c are averages over the 
boundary conditions k E 1BZ of/2, which are well defined [9] in the limit of 
large/2. Similarly, other expectation values are averages over the many-body 
wavefunction as a function of the boundary conditions. 

The key point of the reasoning leading to the density-polarization theory 
is that external effects couple to both density and polarization; so the proof 
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follows that  no two different combinations of periodic density and macro- 
scopic polarization can lead to the same external potential and electric field. 
Therefore, the periodic density and macroscopic polarization completely de- 
termine all properties of the system. 

There is, however, a special case of great importance which should be 
considered. If the macroscopic electric field is zero, then the energy is inde- 
pendent of the macroscopic polarization, and it follows by simple reasoning 
that  the original proof of HK applies: the density determines the short wave- 
length components of the potential and therefore all aspects of the system. 
This is understandable since the requirement that  the macroscopic electric 
field vanishes really is the requirement that  there are no effects in the bulk 
from the surface, since the only long range effects of any aspects extrinsic to 
the bulk are due to the macroscopic electric field. 

It follows therefore that  the case in which the polarization is essential in 
the functional is for changes in the polarization from the value it has with zero 

0 macroscopic electric field, 5Pmac - Pmac -- Pm~¢' Finally, the generalization 
of the HK functional F (Eq. (11)) to define a universal functional applicable 

to systems with polarization $Pm~c ¢ 0 must have the form F[n; 5Pm~c]. The 
total energy functional can be written 

E[n; Pm~c] = - ~  E m ~ .  Pm~¢ + E:~:t[n] + F[n;~iPm~c] , (26) 

where the first term involves the entire polarization and not only the change. 

5.1 E x a m p l e  of  a Case  
W h e r e  T w o  P o t e n t i a l s  L e a d  to  t h e  S a m e  D e n s i t y  

In this section we give a very brief discussion of an explicit example in which 
two potentials lead to the same periodic density in a crystal. The specific 
example is given in MO, section IV, and it is related to the example of GGG. 
The case is a crystal in a macroscopic electric field, treated up to second 
order in perturbation theory, i.e., linear response. This is an explicit counter- 
example to the naive interpretation of the HK theorem, and it is also sufficient 
to show that  the modification to the HK theorem is not simply due to long- 
range Hartree-type terms; there are fundamental changes in the quantum 
mechanical behavior of the many-electron system as described in MO. 

Consider the linear response of a crystal to externally applied fields 
D(q  + G),  where G is any of the reciprocal lattice vectors. To linear order 
the response is conventionally defined in terms of the changes in the polar- 
ization density 5 P (q  + G). We do not need to consider any other Fourier 
components such as 5 P ( 2 q +  G), which are higher order, in the externally 
applied field. The linear response is given by [33,51] 

~ D = ~ E + 4 7 r ~ P = - ~ E  , (27) 

o r  
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47r (iP = (iD - (iE : (¢ - ll)(iE = (ll - c-1)(iD , (28) 

where c is a matr ix  in q + G, q + G'.  Our goal is to find an external field 
which can be applied with no change in the periodic part of the charge density, 
density (in(G) : 0. Consider the long-wavelength limit where each vector 
has a macroscopic part ( ie(0) = 6Prnac and periodic parts ( ie (G) ,  G # 0, 
and similarly for (iD and (iE. If we require 6P(G)  = 0 for G # 0, then 
(in(G) = G - ( I P ( G )  = 0. Since the average value n(0) is fixed by charge 
neutrality, there is no change in any Fourier component of n(G)  if 

4 r r ( I P ( G ) = ~ ( l l - - e - 1 ) G , G ,  ( I D ( G ' ) = 0  , G # 0  , (29) 
G' 

or 

(ID(G) (ll - - 1  - 1  = - e )G,o 47r (iP(0) . (30) 

The last equation explicitly defines the change in external field (ID(G) that  
must be applied to keep all periodic parts of the charge density constant. 
Note that  it involves both an average applied macroscopic field (iD(0) and 
periodic parts (ID(G), G 5£ 0. Thus, we have explicitly constructed a case 
where different external potentials lead to the same density, but different 
macroscopic polarizations Pm~c = P(0)  = P ( G  = 0). 

It is also shown in MO that  analysis of the energy of the dielectric demon- 
strates that  the effect is not simply a change in the average Hartree Coulomb 
energies, but also the kinetic energy and the exchange-correlation energy of 
the electrons also are different for the two cases, even though the density is 
the same. Therefore, we have arrived at the desired result that  in the exact KS 
theory for an insulating crystal both Tind[n(r); (iPmac] and E,c[n(r) ;  (iPrnac] 
must in general be functions of the polarization. 

5.2 Generalized Kohn-Sham (KS) Equations 

The next step in the theory is to generalize the Kohn-Sham (KS) approach 
to include the effects of polarization. Again, we will only summarize results. 
In the original theory the KS equations are derived by minimizing the energy 
with respect to variations of the density, subject to the constraint of conser- 
vation of the total charge. It therefore follows that  in the generalized theory 
in which the polarization is an independent variable, the complete variational 
equations must have the form: 

(iE[n(r); (iPm~c] = 0; OE[n(r); (iPm~c] = 0 . (31) 
(in(r) OPmac 

In the case where the macroscopic electric field is zero, the solution is a 
true ground state; however, just as we have seen before, if there is a non- 
zero homogeneous electric field, then the variational minimum must be found 
within a constrained space. 
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In the KS approach the density is determined by the independent electron 
KS orbitals ¢i,k(r). Therefore the generalization requires that the polariza- 
tion also be expressed in terms of the KS orbitals, and one approach is to use 
the dependence upon the Bloch boundary conditions as was described in the 
section on polarization. This is possible at least for the lowest order effects in 
terms of the polarization, which is all that is need for the variational analysis 
[12]. For a crystal one can always write ¢,,k(r) = exp[ik- r] ¢,,k(r), with k 
considered a continuous parameter and ¢<k(r + R) = ¢;,k(r), where R is a 
periodic lattice vector. In terms of the orbitals the Euler-Lagrange equations 
can be written 

6E[n(r); 6Prn~c] 6Ti,~d[¢<k] 

6¢~,k ( r ) ~¢*,k(r) 

-t- --(2 Emac + O P r n a c . ]  " 6¢; ,k(r)  -- 0 , (32) 

subject to the constraint (¢i,kl¢j,k) = 61j. In this expression the electric field 
Em~c is the derivative of the total average Coulomb energy with respect to 
the macroscopic polarization, and the x-c "electric field" [13] OE appears 

explicitly in the modified KS equations; however, the dependence of the ki- 
netic energy upon the polarization is considered as an explicit functional of 
the orbitals, in analogy with the usual KS equations in which the indepen- 
dent particle kinetic energy is considered a functional of the orbitals rather 
than the density. 

In these modified KS equations there is a new term which cannot be 
expressed as a local potential and its effect is not represented by any possible 
gradient approximation [7,8,52]. Instead it is proportional to the functional 
derivative of Pm~c with respect to each orbi ta l  ¢~,k(r). To the knowledge 
of the author no completely general expression for P~,c  as a function of the 
orbitals has yet been found; however, for the case of zero macroscopic field and 
to linear order in an adiabatic perturbation expansion, [25,24,9,10] 6P~ac 
can be expressed as a Berry's phase of the non-interacting (non-degenerate) 
many-body wavefunction (which is a product of Slater determinants of ¢<k'S, 
one for each spin component) [25, 24, 9]. It follows that the exact KS equations 
contain a term of the form [13,28] 

6 P ~ c  i 
0¢. ,k( r )  -- (2rr)3 Vk ¢i ,k(r)  . (33) 

Thus the modified form of the KS equations for the orbitals is 

: (-I(v + ik) 2 + VKs(r) 
\ z 
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i ) 
- (Emit + E.c,m.c) ¢,,k(r) 

= (34)  

This is the same as the usual form of the equations, Eq. (17), explicitly 
written in terms of ¢~,k(r), except that there is an additional term involving 
the derivative of the periodic orbitals with respect to the wavevector k. 

This generalized form of the KS equations has been proposed by GGG (in 
linear response theory) and by MO. Furthermore, MO have proposed that 
the polarization dependence of the x-c energy should be derivable from the 
properties of the x-c hole in a polarized material, which is closely related 
to the changes in the x-c hole in the presence of electric fields. Aulbur, et. 
al., [28] have carried out calculations of dielectric response with this form of 
the equations using an a approximate expression in which a term involving 
polarization is added to the usual local density approximation. 

6 F u t u r e  C h a l l e n g e s  a n d  C o n c l u s i o n s  

In this paper, we have argued that the usual DFT theory of Hohenberg and 
Kohn (HK), as well as the independent particle ansatz of Kohn and Sham 
(KS), must be generalized in order to describe polarized states of condensed 
matter.  The goal of the present work is to describe the intrinsic properties of 
the bulk in terms only of information in the bulk region, with no additional 
information needed from extrinsic regions such as the surface. In this case, 
it is clear from previous work on dielectrics that the density is not sufficient, 
and that  one way to describe the desired effects is by using the polarization. 
We have argued that: 1) changes in the bulk polarization can be found as 
intrinsic properties of the bulk; 2) they are determined by measurable physical 
integrated currents; 3) they are independent of the density in the bulk region; 
and 4) the total energy of the system involves the average polarization if 
there are macroscopic electric fields. It follows from reasoning analogous to 
the original proofs of HK that  the internal energy must be a functional of 
both the bulk density and the bulk macroscopic polarization. We note that 
the effects cannot be incorporated in any theory based upon the metallic 
state or in any gradient approximations [52]. 

We have also argued that if one insists upon maintaining a description in 
terms of the density then one must include extremely non-local effects into 
the functional for exchange and correlation in order to have an exact Kohn- 
Sham theory, i.e., to capture all the aspects of exchange and correlation. This 
is illustrated by the analysis of a recent paper by Gonze, Ghosez, and Godby 
[31] which argues that  in the usual KS approach in terms of densities, one 
must arrive at "exchange-correlation electric fields" which extend through 
the material and depend upon the size and shape of the macroscopic body. 

Nevertheless, the proof of all aspects of the density-polarization theory 
is yet to be derived. The key problems that  are unresolved are the ways 
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to treat the constrained space required to stabilize the metastable solutions 
which exist in the presence of electric fields. Furthermore expressions for the 
polarization valid to all orders are at present unknown (private communi- 
cation, G. Ortiz). To date there has been no derivation of the polarization 
dependence of the HK or the KS functionals from the fundamental depen- 
dence of the electronic exchange and correlation, that  has been proposed by 
MO to be the essential problem in making a useful generalized Kohn-Sham 
approach. Future investigations can add to our understanding of the nature 
of correlations in many-body problems. 

There are other challenges and opportunities as well. The theory described 
here must have a relation to another well-known generalization of D F T  - 
current-density functional theory [53,8,54]. This is because the change in 
polarization is an integrated current in the special case of the polarization 
current in an insulator. The Berry's phase approach explicitly expresses these 
polarization currents in terms of the adiabatic evolution of the ground state 
of the insulator. Making the connection to current-density functional theory 
could open new avenues for interpretation and understanding of the dielec- 
tric phenomena of condensed matter.  These are just examples of possible 
future challenges and opportunities for future understanding and practical 
calculation methods for the many-electron problem in condensed matter.  
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Abs t r ac t .  This chapter briefly reviews progress to date in the density functional 
theory of time-dependent phenomena. We discuss the fundamental theorems and 
their relation to other approaches. Several exact conditions are treated. We review 
the special case of the linear response to a weak external potential and look specifi- 
caUy at the linear response of the uniform electron gas, which is important for local 
density approximations. We discuss recent suggestions for functional approxima- 
tions, including both the local current approximation and the local-with-memory 
density approximation . We review applications of the theory in three situations: 
Beyond linear response, linear response, and excitation energies, and conclude with 
a brief outlook. 

1 Introduct ion and User's  Guide 

Density functional theory is the study of the one-to-one correspondence [1] 
between an interacting many-body  system, and a fictitious non-interacting 
analog, the Kohn-Sham system [2], whose equations are much easier to solve 
numerically. This mapping is exact in principle, but must  be approximated in 
practice. Over the last several years, there has been an explosion of interest 
in density functional theory, driven largely by its applications in quan tum 
chemistry [3]. This is due to recent progress in the accuracy of available 
approximations [4], and because of the wealth of chemical problems that  can 
be tackled with such a computat ional ly  inexpensive tool [5]. 

Much of this interest has focussed on the problem of N electrons in the 
ground state of an external t ime-independent potential. Accurate solution 
to this problem yields predictions of atomic energies, reaction energies in 
chemistry, cohesive energies in solids, vibrational energies, phonon spectra, 
activation barriers, rotational energies, etc. [6]. Much of the other chapters 
in this book are devoted to this subject. 

But  the basic idea of mapping an interacting problem onto a 
non-interacting one via the density is extremely general, and has been ap- 
plied to many  circumstances beyond the original ground-state problem men- 
tioned above. In the present article, we briefly survey the progress tha t  has 
been made on the t ime-dependent problem. For those less familiar with the 
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t ime-dependent case, we emphasize the comparison between it and the static 
ground-state case. For those more familiar with the t ime-dependent case, this 
article should serve as an update  of an earlier, more comprehensive review 
[7]. Throughout  this article, we use atomic units, in which e 2 = h = m = 1. 
We also use the shorthand x = (r, t) for the pair r and t, which makes the 
equations shorter and more legible. In the remainder of this introduction, we 
first demonstra te  how far t ime-dependent density functional theory has come 
in the last few years (section 1.1), and then give an overview of each of the 
remaining sections in this chapter. 

1.1 W h y  t i m e - d e p e n d e n t  d e n s i t y  f u n c t i o n a l  t h e o r y  is e x c i t i n g  

To give some feeling for the power of t ime-dependent density functional the- 
ory, consider the He a tom as a prototypical  system. From a ground-state 
point of view, this system might be regarded as rather dull. Not much chem- 
istry occurs with He. 1 Furthermore, most physicists are more interested in 
extended systems, whether or not they are metallic, superconducting, etc. 
Wha t  can you do with a ground-state density functional theory of the He 
atom? You can examine how well your favorite exchange-correlation energy 
approximations perform. Among them might be the local density approxima- 
tion (LDA) [2], using the latest uniform gas input [12], and the Colle-Salvetti 
approximation [13], an orbital-dependent correlation approximation.  You can 
construct the exact Kohn-Sham potential [14], examine how good the func- 
tional derivative of your favorite energy approximation is, and argue about  
the implications [15]. You might turn on a electric field, and calculate the 
static polarizability, or hyperpolarizabili ty [16]. 

Now consider the He a tom when you have a fully t ime-dependent density 
functional theory [17-20]. In the most dramat ic  case, you can apply a strong 
laser field, whose strength is comparable to the electron-nuclear electrostatic 
field. You can then watch the system evolve, see if any electrons are ionized, 
watch them oscillate back and forth, calculate the induced dipole moment ,  
etc~ You compare results with experiment,  or other more computat ional ly  
demanding techniques, and find the most reliable functional approximations.  
You can then search the vast parameter  space of the problem on the com- 
puter, guiding the experimentalists in their search for greater gain, etc. As 
an example of interest to the density functional community,  Fig. 1 displays 
the harmonic generation spectrum of He for a 616 nm, 7 x 1014 W / c m  2 laser 
pulse, with and without correlation [19]. While the overall pat tern is the same 
in both cases, the effect of correlation reduces the peak heights by a factor of 
2 or 3. There are few examples in the ground-state lexicon where correlation 
effects are so large. 

If the complexity of this application is too much for you, you might wish 
to consider the more simple linear response regime, where the external time- 

1 Although see the recent interest in van der Waals dimers[8-11]. 
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Fig. 1. Harmonic spectrum of He with and without correlation (see text). The laser 
parameters are X = 616 nm and I = 7.0 × 1014 W/cm2119]. 

dependent potential  is weak relative to the ground-state Kohn-Sham poten- 
tial. Then the formalism gives all the response functions as a function of 
frequency ~, including the static limit (w --+ 0) as a special case. Such quan- 
tities are related to photoabsorption for our simple He a tom [21], bulk and 
surface plasmon dispersions for metals [22-25], etc. 

To appreciate how sophisticated the frequency dependence of these re- 
sponse functions is, note that  a single response function has poles at all the 
excitation energies of the system [26]. Thus a simple application is to ex- 
tract  these energies from the response function, producing a very natural  
excited-state density functional theory. Many of the excitation energies of 
He [27] (and other atoms [28]) have been calculated this way, testing vari- 
ous approximations.  Fig. 2 shows the exact Kohn-Sham eigenvalues of the 
He atom[29] (left-hand side), which typically lie between the experimental  
spin-split levels (right-hand side). In the middle, we show the spin-split levels 
calculated within linear response, using the exact Kohn-Sham potential,  and 
an approximat ion to to the response kernel (defined in section 6.3). Clearly, 
progress is being made toward an accurate, reliable calculational scheme for 
the excitation energies of a system. 
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Fig. 2. Typical excitation energies from the ground-state of He, including the or- 
bitM energies of the exact Kohn-Sham potential (KS), the time-dependent OEP 
spin-split correction calculated within the self-interaction corrected adiabatic local 
density approximation[30], and experiment [27]. (All energies m hartree.) 

1.2 F u n d a m e n t a l s  

In section 2 of this chapter, we review fundamental ideas. To find the ground 
state energy of He or any other electronic system in density functional theory, 
one first establishes the Hohenberg-Kohn theorem [1]. This was done thirteen 
years ago for the time-dependent problem by Runge and Gross [31]. Applica- 
tion of this theorem to a non-interacting system immediately yields the Kohn- 
Sham equations [2], which are simply generalized to the time-dependent case. 
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In the ground state, the energy satisfies a minimization principle, and 
the value of the energy is of great interest in most applications. The time- 
dependent analog of the energy is the action, which satisfies a stationarity 
condition. However, the action plays a much less significant role in the time- 
dependent problem, where its actual value is never of interest, but only its 
functional derivatives are, in striking contrast to the ground-state energy. 

A fruitful area of progress in the ground-state case has been the relation of 
density functional to standard perturbation techniques. The Sham-Schliiter 
equation [32] relates the exchange-correlation potential of density functional 
theory to the exchange-correlation contribution to the self-energy of many- 
body theory, which was useful in understanding the difference between the 
Kohn-Sham gap and physical gap in bulk semiconductors and insulators. We 
discuss the time-dependent generalization of this equation [3a]. 

The optimized effective potential (OEP) formalism has been developed 
as a method for calculating the Kohn-Sham potential of explicitly orbital- 
dependent functionals [34, 35]. The (highly accurate) Krieger-Li-Iafrate (KLI) 
approximation [36] makes this a practical scheme for calculations. We show 
the time-dependent equivalent of this approach. This scheme includes exact 
exchange by construction, since the Fock integral is an explicit functional of 
the orbitals. In time-dependent and excited-state problems, this can be much 
more important than in the ground state, given the emphasis on unoccupied 
orbital energies, in contrast to the total ground-state energy. 

Lastly in this section, we generalize all results to include spin-dependence. 
This is very useful for the accurate treatment of open-shell atoms, e.g., Li. 

1.3 Exac t  c o n d i t i o n s  

In section 3 of the chapter, we discuss exact conditions satisfied by the 
time-dependent exchange-correlation potential. An extremely useful guide 
to building accurate approximations to the ground-state energy has been 
the study of conditions satisfied by exac t  functionals. Our next section is 
rather short, where we discuss exact conditions which must be satisfied by 
the time-dependent exchange-correlation potential. These may be divided 
into two kinds: those that  have a ground-state analog (e.g., zero net exchange- 
correlation force and torque, [37, 38]) and those that have not (e.g. transla- 
tional invariance [39]). The brevity of this section suggests that much work 
is yet to be done in this area. 

1.4 L i n e a r  r e s p o n s e  

In section 4, we develop the special case of linear response, i.e., what hap- 
pens when the time-dependent external potential can be treated as a weak 
perturbation of the ground state. This is formally analogous to the linear 
response theory of the ground-state, only now there is a non-zero frequency 
w in the perturbation. This leads to a much richer variety of behavior in 
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the response functions. We introduce the exchange-correlation kernel, which 
characterizes the deviations from the bare Kohn-Sham response, and discuss 
its exact restraints. We also show the OEP equation for this kernel. We gen- 
eralize these results to the response to a time-dependent vector potential [40], 
which we later need for the development of a frequency-dependent local den- 
sity (type) approximation [40]. We end this section with some results for the 
exchange-correlation kernel of a uniform gas [41,42]. 

1.5 A p p r o x i m a t e  functionals 

In section 5, we present a variety of approximate functionals. These fall into 
two broad categories: the majority are LDA-type, using uniform (or slowly- 
varying) gas input, and the rest are perturbative in the Coulomb repulsion, 
e.g., exact exchange-only. This mirrors the situation in ground-state density 
functional theory. The LDA-type appproximations have gone through a very 
interesting development, in which appreciation of the essential differences 
between the time-development in an inhomogeneous system and that in a 
uniform system has been crucial to the construction of approximate func- 
tionals. Dobson [39] observed that the two distinct components of fluid flow, 
a compressive piece and a rigid displacement, must have different frequency- 
dependences, if certain exact constraints are to be satisfied. This has led 
to two of the latest approximations: the local current-density approximation 
(LCDA) of Vignale and Kohn for the high-frequency linear response [40], and 
the local-with-memory density approximation (LMDA) of Dobson, Biinner, 
and Gross [43], which goes beyond linear response. Lastly, we discuss a simple 
exchange-only approximation to the KLI exchange-correlation kernel, which 
is used in practical calculations [44]. 

1.6 Appl icat ions,  including excitation energies 

In section 6.3, we discuss (in more detail than in section 1.1 above) recent 
applications of density functional theory. The most exciting is perhaps the 
phenomena seen when atoms are subjected to superintense laser pulses, (sec- 
tion 6.1) as illustrated in Fig. 1. For these problems, it appears that density 
functional theory is the only practical way to perform calculations which 
include electronic correlations. 

A more standard application of time-dependent density functional theory 
has been in the photoresponse of a large variety of electronic systems [45], 
mostly in the linear regime. More recent has been the application of linear 
response theory to the problem of finding excitation energies [26]. This can 
be done exactly in principle, since the poles of the interacting susceptibility 
are at the true excitation energies of the system. We discuss the accuracy of 
the various approximations needed to make this a practical scheme. 
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2 F u n d a m e n t a l s  

2.1 H o h e n b e r g - K o h n  T h e o r e m  

The analog of the Hohenberg-Kohn theorem for time-dependent problems 
is the Runge-Gross theorem [31]. Consider N non-relativistic electrons, mu- 
tually interacting via the Coulomb repulsion, in a time-dependent external 
potential. The Runge-Gross theorem states that the densities n(x) and n'(x) 
evolving from a common initial state ~0 = ~(t0) under the influence of two 
potentials v(x) and v~(x) (both Taylor expandable about the initial time to) 
are always different provided that  the potentials differ by more than a purely 
time-dependent (r-independent) function: 

v(x) ¢ v'(x) + c(t) (1) 

Thus there is a one-to-one mapping between densities and potentials. 
We can prove this theorem by first showing that the corresponding current 

densities: 
j(x) = @(t)l jp(r) I~(t)) , (2) 

where 
i N 

jp(r) = ~ E (VjS(r - r j)  + (f(r - r j )Vj)  (3) 
j----1 

is the paramagnetic current density operator, must differ. The equation of 
motion for the difference of the two current densities is: 

CO'CO t ~ t o (j(x) - j ' (x)) = - i@ol  lip(r), H(to) - H'(to)j] I+o) 

= -no ( r )V  (v(r, to) - v'(r, to)) , (4) 

with the initial density 
. o ( r )  = , (5) 

since the Hamiltonians differ only in their external potentials. Repeated use 
of the equation of motion yields, after some algebra [7], 

C o ,~ k+ l  
~-~] (j(x) - j '(x)) t=to = -n0(r)Vwk(r)  

(Co)k v'(x)) wk(r)= (v(x)- 
t~to 

with 

(6) 

(7) 

If (1) holds, and the potentials are Taylor expandable about to, then there 
must be some finite k for which the right hand side of (4) does not vanish, 
so that  

j(x) ¢ j '(x) . (8) 
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To extend this result to the densities, we use continuity, 

0 
O---t (n(x) - n'(x)) = - V .  (j(x) - j '(x)) (9) 

and calculate the (k + 1)th time derivative of (9) at t = to: 

( °)k+2 t=to -~j  (n(x) - n'(x)) = V.  (no(r)Vwk(r)) (10) 

To see that the right-hand-side cannot vanish for all k, note the following 
identity: 

d3r (wk(r)no(r)Vwk(r)) = 

f d3r {wk(r)V" (no(r)Vwk(r)) + no(r)[~wk(r)] 2 } (11) 

The left-hand side may be transformed into a surface integral via Green's 
theorem, and vanishes for physically realistic potentials (i. e., potentials aris- 
ing from normalizable external charge densities), because for such potentials 
the quantities wk(r) fall off at least as 1/r. Since there must exist some k for 
which ~Twk(r) does not vanish everywhere, the second integral on the right 
must be non-zero. Thus the right-hand side of (10) cannot vanish everywhere 
for all values of k, and the densities n(r, t) and n'(r,  t) will become different 
infinitesimally later than to. 

Note that the difference between n(x) and n'(x) is non-vanishing already 
in first order of v(x) -v '(x) ,  ensuring the invertibility of the linear response 
operators of section 4. 

Since the density determines the potential up to a time-dependent con- 
stant, the wavefunction is in turn determined up to a time-dependent phase, 
which cancels out of the expectation value of any operator. 

2.2 K o h n - S h a m  E q u a t i o n s  

The Runge-Gross theorem can also be applied to a fictitious system of non- 
interacting electrons having the same density as the physical system, thereby 
establishing the uniqueness of the Kohn-Sham potential (but not its exis- 
tence) for an arbitrary n(x). Assuming vs[n] exists, the density of the inter- 
acting system is 

N 

n(x) : Z [~J(X)[U' (12) 
j = l  

with orbitals ~j (x) satisfying the time-dependent KS equation 

.O~j(x) ( ~ 7  2 ) 
Ot = - 2 -  + vs[n](x) ~j(x) (13) 
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We may then define the exchange-correlation potential as 

Vxc[n](x) = vs[n](x)- v(x) - vn[n](x) , (14) 

where v(x) is the external time-dependent field, and vu[n](x) is the time- 
dependent Hartree potential generated by n(x): 

f n(rl, t) 
vH(x) = / d % '  r'l J 

(15) 

As in the static case, the great advantage of the time-dependent KS 
scheme lies in its computational simplicity compared to other methods such 
as time-dependent Hartree-Fock or time-dependent configuration interaction 
[46-53]. In contrast to time-dependent Hartree-Fock, the effective single- 
particle potential Vs is a local potential, i.e., a multiplicative operator in 
configuration space, which, in principle, contains all correlation effects. 

An important difference between ground-state density functional theory 
and the time-dependent formalism developed above is that in the time- 
dependent case the 1-1 correspondence between potentials and densities can 
be established only for a fixed initial many-body state ~t0, so that functionals 
depend implicitly on ~P0. However, if both ~0 and the initial KS determinant 
~b0 are non-degenerate ground states, then they are uniquely determined by 
the density, and all quantities are functionals of the density alone. 

2.3 S t a t i o n a r y - a c t i o n  p r inc ip l e  

At this point, it is customary to define an action functional, which has a 
stationary point at the solution of the time-dependent SchrSdinger equation, 
with initial condition ~'(t0) = ~P0- A standard choice has been [7]: 

fl A = dt (¢(t)li - H(t)l#(t)) (16) 

which may be considered as a functional of n(x)  Variation of this functional 
with respect to n(x) yields an Euler equation whose solution should yield the 
physical density. In the Kohn-Sham scheme, 

.As = dt (k~(t)li - [ts(t)lkP(t)) , (17) 
O 

where Hs is the non-interacting Kohn-Sham Hamit tonian An exchange- 
correlation action functional can then be readily identified as 

l f t '  f / n(r,t) n(r',t) .A×¢[n] = Bs[n]- B[n] - ~ dt d3r d3r ' -[r----7-q~ ' (18) 
0 

where 
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Bin] = A[n] + f t l d t  /d3rn(x)v(x) (19) 
,/to 

is the universal (i.e., potential-independent) contribution to .4, and likewise 
for Bs. Employing these definitions and the Euler equation, we find 

Vxc(X) = 5,4xc/Sn(x) • (20) 

However, some difficulties with the action defined as in (16) have been no- 
ticed (see section 4.1). Here we give a simple demonstration of the inadequacy 
of (16). Since the stationary point satisfies the Schr5dinger equation, .4 = 0 
at this point. This is likewise true in the Kohn-Sham system, so that  As = 0 
also. Inserting the definitions of B and Bs into (18), and using the definition 
of the exchange-correlation potential, and the fact that ,4 = .As = 0 at the 
stationary point, we find: 

F f  Axe[n] = dt d3r n(x) {vH[n](x)/2+ Vxc[n](x)} (21) 
• / t o  J 

Functional differentiation of this suspiciously simple result yields a result 
which is only true for the one-electron case: 

F /  v.(~)  = - dr' d~, -' n(~') ~ ( ~ )  (22) 
J,0 ~ ( x ' )  

From this simple exercise, we conclude that  the definition of the action of 
(16) is inadequate. 

Note that  the same reasoning may be applied to the ground state problem, 
but with different results. The energy is analogous to the action, but in this 
case, the value of the energy at the minimum differs in the physical and KS 
systems, thereby avoiding the conundrum. 

2.4 R e l a t i o n  to  m a n y - b o d y  theory 

Van Leeuwen [33] has recently shown how to connect time-dependent density 
functional theory to the better-known language of many-body perturbation 
theory. However, because of the explicit time-dependence of the external po- 
tential, we are always dealing in non-stationary states, so that  one cannot 
use the usual technique of time-ordered products and Wick's theorem [54]. 
This difficulty shows up whenever there is explicit time-dependence in the 
many-body problem, and Keldysh [55] devised a method used to get round 
it, by parametrizing the physical time t(v) with a pseudotime r. 

Employing this formalism, one can derive the time-dependent Sham- 
Schlfiter equation [32]: 

dy' G(y, y') v = G s(y,' y) xo(y') 

f d4¢ / d%" Gs(y,y ) ~ '¢') ' xo(y, G(¢', y) (23) 
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where y = (r, r), f d4y = f-~o~ dTdt/dr f d3r, and G(y, y') is the one-particle 
Green's function, with Gs its Kohn-Sham analog, while ~Uxc is the exchange- 
correlation contribution to the self-energy [33]. 

Van Leeuwuen has also constructed an action functional which does not 
suffer the causality difficulty. In the Keldysh formalism, all response functions 
are symmetric in pseudotime, but become causal when transformed back to 
real time[56]. 

2.5 E x p l i c i t  o r b i t a l  d e p e n d e n c e  

Since the Kohn-Sham orbitals are implicit functionals of the density, we can 
consider the Kohn-Sham potential as an explicit functional of the orbitals, 
rather than of the density alone. The theory remains formally exact, but is 
written in a different way. Such a procedure can be useful for approximate 
functional development. In particular, with explicit orbital functionals, the 
exchange contribution becomes exact. 

When the action is written as a functional of the orbitals, the condition 
used to determine the potential is ~A/~vs(x) = O. Hence the name optimized 
effective potential (OEP), but we emphasize that  this potential is simply the 
usual Kohn-Sham potential. Here we do not give a derivation of the time- 
dependent OEP equations, but instead we just state the results: 

S;: S ( ) * # # dt d3r Gret(x,x') Z Cj(x)¢j(x )[vxc(X )-Uxc,j(x')]÷c.c. = 0  , 
j = l  

(24) 
where 

1  Axo[ ] (25) 

Here ~ denotes the Kohn-Sham wavefunction, and the kernel Gret(x, x') is 
the retarded one-particle Green's function of the system: 

{ i a / a t  - (-x7'2/2 + vs (x ' ) )  } Gret(x,  x ')  ---- (~(x - x ')  (26) 

with initial condition Gret(x, x I) --- 0 for t '  > t. Explicitly, 

oo 
iGre t (x ,x ' )  ---- ~ ¢ ~ ( x )  C j ( x ' )  ( ~ ( t -  t ' )  . (27) 

j--1 

Note that  the functions Uxc,j are given as functional derivatives of the exchange- 
correlation action. While the definition (16) has serious difficulties for other 
purposes, it appears to yield the correct results in this context. 

The solution of these time-dependent OEP equations (with some approx- 
imation for Axc[O]) is extremely computationally demanding. The Krieger- 
Li-Iafrate (KLI) approximation is very useful in this regard, because the error 
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made in this approximation is expected to be so small relative to the errors 
made in functional approximations [36], that  we can treat its results as 'ex- 
act.' By ignoring an orbital-dependent contribution which averages to zero 
over each orbital, one can rewrite the integral equation (24) so that  it has 
an analytic solution for the exchange-correlation potential, Equation (22) of 
Ref. [44], which is used for practical calculations. 

2.6 Spin-density functional theory 

The above arguments can all be easily generalized to the common case of 
spin-density functional theory [7], in which the external field can differ for 
each of the two spin components along some fixed direction. This corresponds 
physically to the coupling to the spin of an electron of an external magnetic 
field which has only one non-zero component. Then we can establish a one- 
to-one mapping between spin densities nt(x) and n~(x) and potentials vT(x ) 
and v4(x), and all quantities can be considered funetionals of the two spin 
densities, e.g., the Kohn-Sham potential is vs,o(x)[n?, n j,], where a --j~, $. 

In analogy to the ground-state problem, when B = 0, v T = v+ = v, but 
the spin-dependent Kohn-Sham equations do not reduce to the regular Kohn- 
Sham equations, unless the system is spin-unpolarized. The great practical 
benefit of spin-density functional theory when B = 0 is the improvement in 
accuracy of approximations for spin-polarized systems (e.g., local spin density 
approximation over local density approximation). 

3 E x a c t  C o n d i t i o n s  

3.1 N e w t o n ' s  t h i r d  law 

Consideration of the equation of motion for the ~ operator leads to [38,57, 7] 

= e 3 r r n ( x )  = - e3r   voxt( ) , (2S) 

i.e., the net external exchange-correlation force must be zero. The analogous 
statement is true for the Kohn-Sham system, which must reproduce the same 
equation of motion. Then, from the relation between the Kohn-Sham and 
external potentials (14), and the fact that 

f d3r n(x) Vvs(x) = , 0 (29) 

we find 

Similarly, one obtains 

d3r n(x) Vvxc(x)=O . (30) 

d3r n(x) r × Vvx¢(X) = , 0 

i.e., the net exchange-correlation torque must vanish. 

(31) 
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3.2 T r a n s l a t i o n a l  i nva r i ance  

Consider a rigid boost X(t) of a static density, n(r). Then the exchange- 
correlation potential of the boosted static density will be that of the un- 
boosted density, evaluated at the boosted point, i.e., 

Vxc[n'](r,t) = Vxc[n](r - X(t)), n'(r,  t) = n(r  - X(t)), X(t0) = 0 
(32) 

This condition is universally valid [37] . It was first discovered [39] in the 
special case of a harmonic external potential driven by driving force F(t),  
where X(t) is the classical motion of an oscillator under this driving force. 
This is the harmonic potential theorem [58], which is an extension of the 
generalized Kohn theorem [59]. 

4 L i n e a r  R e s p o n s e  

Consider an external potential of the form 

v~xt(x) = v0(r) + vl ( r , t )  O( t -  to) , (33) 

where O(t) = 1 for t > 0, but is zero otherwise, and assume that  at times 
t < to the system is in the ground state corresponding to v0(r). In this case, 
the initial density n0(r) can be obtained from the self-consistent solution of 
the static ground-state Kohn-Sham equations and, via the Hohenberg-Kohn 
theorem, the time-dependent density is a functional of the external potential 
alone, n[v~xt](x). We expand this functional in a Taylor series in vl(r, t): 

n(x )=no(r )+n l (x )+ . . .  , (34) 

where the lower indices denote the orders in Vl. The first order density re- 
sponse nl is given by 

nl(x) = / d4x X(x,x') Vl(X') (35) 

with the density-density response function 

(~n[Vext] (X) (36) 

The same reasoning applies to the Kohn-Sham system, yielding 

5n[vs](x) ,~,[,,o] (37) xs( , x ' ) [n0]  - 

which can be found by inverting the dependence vs[n], and can be expressed 
in terms of the static unperturbed Kohn-Sham orbitals Ck: 
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¢j (r)¢~ (r)¢~ (r')¢k (r') 
xs(r, r ';w) = E ( f k  - f j)  (38) 

j,k ~v - (E~ - ok) + it/ 

Here, (fk, f j)  are the occupation numbers (0 or 1) of the KS orbitals. The 
summation in (38) ranges over both occupied and unoccupied orbitals, in- 
cluding the continuum states. 

A Dyson-like equation may be derived between ~ and Xs. Using the chain 
rule, we write 

X(~,~,)=fd~x,, ~(~)5~(~")[  ~v~(~") ~o-~(~') ~o 
(39) 

We can write an expression of the second functional derivative above in terms 
of v×c using its definition, (14): 

~s(~) .o f 
~o.,(~,) = ~(x- ~,) + d4~ '' ~.~o(~) ~(x") ~.(~") ~v..,(~') (40) 

where VHx~ = v.  + Vxc and 5v. (x) /Sn(x ' )  = 5(t - t ' ) / I r  - r '  I. Insertion of 
this result into (39), and using the definitions of the physical and Kohn-Sham 
response functions, we find 

f f 5~xo(~3) X(x,x ' )  = X s ( x , x ' ) +  d4x3 d4z4 Xs(x, x3) 5n(x4) X(x4, x') . (41) 

This equation has the form of the time-dependent random phase approxima- 
tion (RPA), and reduces to that  approximation if 5Vxc/Sn is ignored. 

LFrom (41), we can extract the exact linear response of the physical sys- 
tern, by multiplying X by the perturbing potential, and integrating over x', 
to find the self-consistent linear response equations: 

nl(x) : f .s,,(z') , (42) 

where 

vs,t(x) = v~(x) + ~(~) + fd4x '~vX°(x) ,~n(x') [noln~(x') (43) 

consists of the external perturbation vl and the Hartree- and exchange- 
correlation contributions to first order in the perturbing potential vl. 

The results here have been generalized to finite temperature in thermal 
equilibrium [60, 61]. 
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4.1 E x c h a n g e - c o r r e l a t i o n  ke rne l  

In these derivations, the quantity 

6Vxc(Z) (44) fxc( , - 

plays a key role, and is called the exchange-correlation kernel. In the theory 
of classical liquids [62], fHxc = ~VHxc/6n is the Ornstein-Zernike function. 
The Fourier transform with respect to time of fxc is 

// fxc(r,r';0~)---- d t e  i°~t fxc( r , t ; r / ,0 )  (45) 
CXD 

and the relation to the static case is [7] 

62 Exc 
lira fxc(r ,  r'; w) = . (46) 5 (r)Sn(r') 

An exact formal representation of fxc is readily obtained by solving (35) for 
vl and inserting the result in (43): 

fHxc(X, x') = X-SI(x, x') - X - l ( x ,  x') (47) 

where Xsl and X-1 stand for the kernels of the corresponding inverse integral 
operators whose existence on the set of densities specified by (33) and (35) 
follows from (10), as mentioned in section 2.1. 

As a consequence of causality, 

f x c ( X , x ' ) = 0  for t ' > t  (48) 

making fxc asymmetric under interchange of x and x ~. This is the difficulty 
in treating fxc as a second functional derivative of the action defined by (16) 
in section 2.3. 

4.2 E x a c t  c o n d i t i o n s  

The kernel fxc(r ,  r ' ,w) is an analytic function of c0 in the upper half of the 
complexw-plane and approaches a real function fxc(r ,  r'; ~ )  for co -+ oo [63]. 

r i Therefore, the function (fxc(r,  r', w ) -  fxc( , r  ; cxD)satisfies Kramers-Kronig 
relations : 

~fxc(r, r',w) -- f(r,r', oo) = IP ''~'"1~---' 
-~fxc(r, r', w') 

J ~ w l - - w  
(49) 

r', o~) = - IP  [ d__w' ~fxc  (r, r', v ' )  - fxc (r, r'; oo) 
~fxc  (r, 

J 71" ~ . J  - - ~ . O  

Also, since fxc(Z, x') is real-valued, 

(5o)  
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fxc(r,  r'; w) * '" = f x c ( r , r , - w )  (51) 

Besides that, the response functions )Cs and X satisfy the symmetry relations 
[64] 

g ( r , r ' ;w)  = x ( r ' , r ;w)  (52) 

provided that the unperturbed system has time-reversal symmetry. Equation 
(47) then implies that 

fxc( r , r ' ;w)  = fxc( r ' , r iw)  . (53) 

The exact conditions on the potential of section (3) also yield condi- 
tions on fxc, when applied to an infinitesimal perturbation. Taking functional 
derivatives of (30) and (31) yields 

and 

d3r n(r) Vfx~ (r, rt; w) = -~7'Vxc (r') (54) 

j dar  n(r) r × Vfxc ( r , r ' ;w)  = x . ~ r ~ V'Vxc(r') (55) 

Taking f dar ' n(r') of each side, and using (30) and (31) once again, yields 

dar ] dar ' n(r) n(r ')  = 
f 

Vfxc(r ,  r'; w) 0 (56) 

and 

]d3r n(r) ] d 3 r  ' n ( r ) n ( r ' ) r ×  V f x c ( r , r ' ; w ) = 0  . (57) 

These equations place strong restrictions on the frequency dependence of fxc, 
since the right hand sides are all frequency independent [38]. 

4.3 Exp l i c i t  o r b i t a l - d e p e n d e n c e  

One can also consider the linear response regime of the OEP equations, and 
ask what integral equation fxc satisfies [27]. This turns out to be identical 
to the OEP equation itself, (24), but with v×c(x) replaced by fxc(X, x') and 
Uxc,j(x) replaced by gxc,j(x, x'), where 

1  Vxc( ) 

{¢k(r) exp(-iek(t-to))} 

(58) 

and the {¢k (r)} are the ground-state Kohn-Sham orbitals. Thus gxc,j involves 
a straightforward functional derivative of Vxc, but evaluated on the time- 
evolved ground-state Kohn-Sham orbitals. 
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4.4 Tensor exchange-correlation ke rne l  

This scalar linear response theory may be easily generalized to the time- 
dependent current response ja (x) to a vector potential a l (x)  [65,40]. Follow- 
ing the reasoning above, we find 

j l ( r , ~ )  = ;dar  ' Xs ( r , r ' ;w) .  as, l(r ' ,w) , (59) 
J 

where 
as,1 ---- al + an + axe (60) 

is the Kohn-Sham vector potential, 

1 /dar '  ~ jl(r ' ,~v) (61) aH- (iw) 2 V V' 

is the longitudinal vector Hartree potential, and 

axc(r ,w) = fd3r ' fxc ( r , r ' ;w)  . j l ( r ' ;w)  (62) 

is a linear functional o f j l .  The boldface X and fxc indicates that these are 
now 3 × 3 tensors. The tensor exchange-correlation kernel is 

fxc ( r , r ' ;w)  = X~ -1 ( r , r ' ;w)  - X -1 (r , r ' ;w)  - V I r _ ~ V '  (63) 

where ® denotes the outer product of two vectors, and the Kohn-Sham sus- 
ceptibility tensor is 

¢5 (r)¢; (r ')V¢~ (r) ® VCk (r') 
x s ( r , r ' ; ~ )  = n ( r ) 5 ( r -  r') 11+ y ~ ( f k - f j )  w - ( e j - - ¢ k ) + i ,  

j,k 
(64) 

This generalization is necessary for the construction of a local density type 
approximation for time-dependent problems, as in section 5.4. 

4.5 H o m o g e n e o u s  gas 

In order to investigate fxc for the uniform gas, we consider (47) in the uniform 
case. Fourier transformation with respect to (r - r') and (t - t') leads to 

unif . 1 1 47r (65) 
fxc (n,q,w)---- Xunif(n,q;¢o ) x u n i f ( n , q ; ~ d  ) q2 ' 

where Xs unif is the Lindhard function [54]. In the theory of the uniform electron 
gas [63,66-68] Yxc'umf (q,: w) is proportional to the local field correction 

q2 
~ ( q , ~ )  ---- unif - ~-~fxc (q, ~) (66) 
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,unit, -+ O) and runif, Oe) as F i g .  3.  / x c  ~ q = 0 ,  w = /xc [q O, ~ --+ functions of re. 

We focus here on the limit q ~ 0, as this is used in the Gross-Kohn 
approximation (see section 5.2). Writing 

= h m f x °  (q,w) , (67) L ( n )  . un,f 
q - - ~ O  

then f o ( n )  is known from the compressibility sum-rule, while foo (n) is known 
from the third frequency-moment sum rule [42], each in terms of the accurately- 
known uniform gas exchange-correlation energy [69]. We plot these functions 
in Fig. 3. Furthermore, the imaginary part of f~nif exhibits the high-frequency 
behavior 

lim a-unif _ _ _  (68) ~--*~ ~]xc  (q,w) = c 
~3/2 

for any q < c¢ [70]. A second-order perturbation expansion [70,71] of the 
irreducible polarization propagator leads in the high-density limit to c = 
237r/i5, while others [72,73] find double this value; see also Ref. [74]. Some 
exact features of X umf are known, which lead to some exact properties of 
fx unif Many of the corresponding properties for q -+ 0¢ are also known [7]. C " 

Taking into account the exact high- and low-frequency limits, Gross and 
Kohn [41] proposed the following smooth interpolation for f~(n): 

ci513(n) ~ (69) 
. .~f~(n) = - c ( 1  -4-~4t3(n) ~2)5/4 

where 
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= - f0(n)), (70) 
and V = ( F ( 1 / 4 ) ) 2 / ( 4 x / ~ - ~ )  • The real part can then be found in terms of 
elliptic integrals using the Kramers-Kronig relation (49). An extension of 
the parametrization (69) to non-vanishing q was given by Dabrowski [75]. 
The spin-dependent case was treated by Liu [76]. A similar interpolation for 
the exchange-correlation kernel of the 2-dimensional electron gas has been 
derived by Holas and Singwi [70]. 

More recently, Bhhm, Conti, and Tosi [77,78] have calculated fxc(W) 
within several different approximations for the uniform gas. They find that 
two-plasmon processes induce a strong peak in the imaginary part just above 
twice the plasmon frequency, leading to highly nonmonotonic behavior in 
the real part. The resulting frequency dependence is very different from the 
smooth interpolation of (69). 

Lastly, we discuss the response of the uniform gas to the vector potential of 
section 4.4. In the limit of small wavevector q, i.e., q <<  kF and q << w / v F ,  

unif : w-2 f W ( n ) ( q 2 l l  _ q fxc (q,w) [f~(n) q ® q +  ®q) ] ,  (71) 

where fT (n) is the transverse exchange-correlation long wavelength response 
function of the uniform gas. Thus the exchange-correlation vector potential 
of a uniform gas in response to a slowly varying perturbation is 

axcif(r,w) = w - 2  {V [ f ~ ( n ) V j l ( r , w ) ]  - V x [ f T ( n ) V j l ( r , w ) ]  } (72) 

The behavior of the transverse kernel fw (n) is also known in the limits w -~ 0 
[79] and w --* c~ [40]. Conti, Nifosi, and Tosi have calculated this transverse 
component, again finding strong structure around twice the plasmon fre- 
quency [79]. 

5 A p p r o x i m a t e  F u n c t i o n a l s  

In this section, we sketch the historical evolution of functional approximations 
for Vxc and fxc. This illustrates how exact conditions are used to refine 
and sophisticate approximate functionals. What is perhaps lacking is more 
cMculational comparison between these various functionals. After all, the 
simplest approximation (ALDA) satisfies all exact conditions except, oddly 
enough, recovery of the frequency-dependent response of the uniform gas. 

5.1 Adiaba t ic  local dens i ty  approx imat ion  

The simplest possible approximation of the time-dependent exchange- 
correlation potential is the adiabatic local density approximation (ALDA). 
It employs the functionM form of the static LDA with a time-dependent 
density" 
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A L D A  uni f  d (73) 

Here cxcUnif is the accurately known exchange-correlation energy per particle 
of the uniform electron gas. Naively, one might expect ALDA to be a good 
approximation only for nearly uniform densities, 1.e., for functions n(x) that  
are slowly varying both spatially and temporally. However, for the ground- 
state energy, LDA is moderately accurate for almost all systems [80], so there 
is room for optimism. For the time-dependent exchange-correlation kernel of 
(44), (73) leads to 

d 2 
_ _  [ un i f  (74) 

The time Fourier-transform of the kernel has no frequency-dependence at all. 
This is not such a bad thing, as it means that  translational invariance, (32), 
is satisfied, although in a rather crude fashion. 

5.2 F r e q u e n c y - d e p e n d e n t  L D A  

In order to incorporate the frequency-dependence of fxc in some approxi- 
mate fashion, Gross and Kohn [41] suggested using the frequency-dependent 
exchange-correlation kernel funif of the uniform electron gas in a local ap- J x  c 
proximation: 

L D A  t un i f  fxc [n0](r,r ;w) : f x c  ( n 0 ( r ) , l r - r ' [ ; w )  (75) 

The LDA of non-local quantities, such as response functions, always involves 
some ambiguity [2] as to where the inhomogeneous n0(r) is to be evaluated. 
To avoid this, Gross and Kohn [41] treated the case where nl(r ,w) is slowly 
varying on the length scale given by the range unif o f fxc  ( n 0 ( r ) , l r - r ' l ; ~ ) . T h e  
change in the exchange-correlation potential is then 

Vxc(r,w) = nl(r ,w) fd3r ' f U c i f  ( n 0 ( r ) ,  [ r  - -  r'l; 0.) ) (76) 

Thus the Gross-Kohn approximation may be written as 

fxc~K [no] ~ ,, ~unif = 0; W) (77) ( r , r ; w ) - - - - 5 ( r - - r ) j x c  (n0(r),q , 

whereas ALDA uses the zero-frequency limit of this kernel for all ~. As we 
see in the next two sections, the GK approximation, by incorporating the full 
frequency dependence of the uniform gas exchange-correlation kernel, violates 
several of the exact conditions developed in section 3. 
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5.3 Fol lowing  a f lu id  element 

The difficulties with the frequency-dependent LDA of Gross and Kohn were 
first noted by Dobson [39]. Harmonic potential motion causes a static ground- 
state density to be rigidly boosted, as discussed in section 3.2, leading to a 
response kernel with no frequency dependence. This suggested the following 
general property of the time-evolution of an inhomogeneous system (in the 
linear response regime). Consider a fluid element at x = (r, t). It has evolved 
from an element at x ~, where t ~ < t, and in general, r ~ ~ r. The position r ~ 
of the fluid element at earlier t ~ is determined by the differential equation: 

/~ = u(x ')  = j ( x ' ) /n (x ' )  (78) 

where the dot denotes a time derivative, and u(x) is the fluid velocity, with 
initial condition rt,=t~ = r (not to be confused with Uxc,j). This uniquely 
determines the fluid displacement history. The linearized continuity equation 
(9) then yields 

n l  (X) ----- ~/I°mP(x) -~ ~/ligid(ff~) : - n 0 ( r )  V .  u(x) - u ( x ) .  Vn0(r) . (79) 

The first term above is the compressive component of the fluid motion, which 
comes from changes in the velocity distribution of the fluid. The second term 
originates from the rigid translation of the fluid, without any changes in 
the velocity distribution, such as occurs in the boost described in transla- 
tional invariance. Thus the response to the compressive component should 
be frequency-dependent, but not that of the rigid component, i.e., 

Vxc(r,w) fw(n0(r)) c o m p ,  , r igid ,  , = n l  tr, j (80)  

Clearly, for the boosts used in translational invariance, n~ °rap = 0, while this 
ansatz is also exact for the response of the uniform gas, w h e r e  n~ igid ~- 0. 

5.4 Local current-density approximat ion-  L C D A  

Consider applying (54) to a slowly varying density, so that  fxc could be 
replaced by its uniform electron gas limit, which is known to be short-ranged. 
Then we find 

f x  unif c (q = 0 ,w,n(r ) )  Vn(r)  = VVxc(r) , (81) 

which is impossible, as the left-hand-side is frequency dependent, while the 
right is not. Thus fxc for an inhomogeneous system is long-range in space 
and a nonlocal functional of the density [38]. 

Using the current density formalism, Vignale and Kohn [40] have shown 
how to overcome this difficulty, and produce a semilocal current-density ap- 
proximation. Consider an almost uniform gas, where the deviations are both 
small and slowly-varying: 

n0(r) = n [ 1 + 2 7  cos(q1 . r ) ] ,  (ql ( (  kF,W/kF;~/ ( (  l) . (82) 
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VK deduce an analytic expression for fxc to first order in % by using (56) and 
(57) and the Ward identity. This contrasts with the scalar version, in which 
fxc(q + ql, q; w) has a singularity of the form q. ql/q 2 as q -+ 0 at finite ql, 
which causes the long-rangedness and non-locality of the scalar case. These 
effects do not show up here, as the tensor fxc contains only differences and 
derivatives of f~o (n) values. 

Next, VK consider the problem of determining axe for a slowly-varying 
inhomogeneity, but which may have large global deviations from uniformity, 
and deduce the general form in terms of gradients of the density and current, 
up to two gradient operators. Then they equate these results to the per- 
turbative ones mentioned above, in the same way as the gradient expansion 
coefficients have been found in the ground-state problem [81]. Some contribu- 
tions of order ./2 are not fixed by this comparison, but are fixed by requiring 
translational invariance (32). They give an explicit formula for the exchange- 
correlation vector potential in terms of n(x) and jl(x) and their gradients, 
with coefficients determined by f~ and fT  [40]. 

In the case where IXgnl/n << q, they recover the GK result, while in the 
case of a parabolic well and uniform perturbing electric field, they recover 
(80), thereby justifying that ansatz under those conditions. 

Finally, note that this analysis applies only for w >> kFq, i.e., high fre- 
quency response, for which ALDA is not justified. A complete local current 
density response theory for all frequencies remains to be developed. 

Very recently [82], the VK result has been simplified, as 

where 

- - i w a x c  ,-, ALDA 1 = -VVxc  + - - V a × o ( r ,  ~) n0(r) 
(83) 

6 = ~ x c  ( ~ ® u + u ® V ~ - ~ 7 2  . u l l ) + ~ x c V . u l l  (84) 

is a visco-elastic stress tensor with complex viscosity coefficients which are 
simply related to f,~ (n) and fT(n) .  For sufficiently slowly varying densities, 
these expressions yield the nonlinear response also [82]. 

5.5 L o c a l - w i t h - m e m o r y  dens i ty  a p p r o x i m a t i o n -  L M D A  

Some recent work goes way beyond the linear response regime, while being 
constrained to respect all the exact conditions discussed here. The ansatz 
suggested is [43] 

Fxo(X) = -Vvxo(X)-  "'x'VtJ (85) 
O(3 

where Fxc is the exchange-correlation force, and/ /xc(n,  v) is a pressure-like 
scalar local memory function of n and r, where r~, (x) is the fluid displacement 
function. Thus locality is defined relative to the fluid element, rather than to 
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a fixed position r. This LMDA is the natural generalization of LDA from the 
static case. 

To see explicitly that (85) satisfies translational invariance (32), note that 
under a rigid boost X(t),. the many-body wavefunction also moves rigidly, so 
that  j (x)  = no(r - X( t ) )X,  and u is independent of r. Thus r '  t, = r + X(t ' )  - 
X(t) ,  and 

1 
F x c ( X ) =  n(x)VIIxc(no(r-X(t ) ) ,w=O)=Fxc[no](r-X(t ) )  , (86) 

satisfying (32). 
Interestingly, the function Hxc(n,w) is fully determined by requiring it 

to reproduce the scalar linear response of the uniform gas. Consider small 
motions at frequency w in a uniform gas of density n. One finds the simple 
condition 

5Hxc/Sn = n f~(n) (87) 

which implies 

j~0 t~ = an' . (88) 

Thus any parametrization of funif of section 4.5 fixes Hxc. • / XC 
Note that (85) defines the exchange-correlation force, rather than poten- 

tiM. For a one-dimensionM inhomogeneity, one can simply integrate this force 
up to a point to determine the potential. Thus this scheme recovers the exact 
VK result for the slowly varying one-dimensional perturbation. In the more 
general three-dimensional case, work is continuing. 

5.6 E x p a n s i o n  in p o w e r s  o f  e 2 

An alternative route to useful approximations is in powers of the Coulomb 
repulsion. To lowest order, one gets the time-dependent exchange-only density 
functional theory, which is most easily expressed in the OEP formalism, since 
the exchange action is an explicitly orbital-dependent functional: 

1 ~-~fd3r  ' ¢:(r''t) Oi(rj't)Oi(r't) (89) 
U x , j ( x ) -  , :1  I t -  r'l 

This can be derived either by inserting the exchange action into the OEP 
equations [44], or directly from the Sham-Schl/iter equation [33], expanded to 
first-order. These equations are computationally similar to the time-dependent 
Hartree-Fock equations, but their solution has one very important  practical 
advantage over Hartree-Fock. The unoccupied orbitals in exchange-only den- 
sity functional theory suffer no self-interaction error, whereas those in HF 
see N remaining occupied orbitals. This feature is not so important  in the 
ground-state problem, but is very significant in time-dependent and excited- 
state problems. 
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One can also imagine going to higher order in e 2, via the Sham-Schliiter 
equation (23), to get ever more accurate results. Of course, for extended 
systems such as metals, one must include all orders within the random-phase 
approximation, to avoid blatantly unphysical results, just as in the ground- 
state problem. 

For practical calculations, one can make a simple analytic approximation 
to the KLI exchange-correlation potential, which we denote PGG [26]: 

N 
P G G  2 Vxc (x) = j 1Z n(x) [Uxcd(x) +c'c'] (90) 

which comes about by retaining only the dominant contribution. This leads 
to a simple analytic form for the exchange-correlation kernel: 

PGG ,. 2 E ; : l  Cj(r) ¢;(r ')  2 
fxc ( r , r ,w)  = - 2 n(r) J r -  r'ln(r') (91) 

This approximate form is exact for exchange for two-electron spin-unpolarized 
systems. For more than two electrons, even at the exchange-only level, the 
exchange-correlation kernel has some frequency dependence. 

6 A p p l i c a t i o n s ,  I n c l u d i n g  E x c i t a t i o n  E n e r g i e s  

6.1 Way  b e y o n d  the  linear response  regime: 
A t o m s  in shor t  laser pulses 

Recently, experiments have been performed in which atoms are subjected to 
very intense, femto-second laser pulses. The external potential is then 

v(x) = __Z + So f(t) z sin(w0t), (92) 
r 

where Z is the nuclear charge, Eo is the electric field of the laser, and f(t) is 
the envelope function of the pulse. 

In these experiments, the strength of the perturbation is comparable to 
the static field of the nucleus, so that linear response theory is simply inad- 
equate. The full time-dependent Kohn-Sham equations are solved, and two 
quantities extracted from the self-consistent density. The induced dipole mo- 
ment 

/ d a r  z n(x) (93) d(t) 

whose Fourier transform, d(w), when squared, is proportional to the harmonic 
spectrum, i.e., the intensity distribution of emitted photons as a function of 
their frequency. Also, decreases in the norm of the single-particle Kohn-Sham 
orbitals in a finite volume 
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Nj(t) = Iv d3r I¢J(X)]~ (94) 

where V is a finite volume, can be loosely equated with the probability of 
ionization of an electron from a given orbital. Calculations of these quantities 
have been performed for Be [44] and Ne [18] subjected to single frequency 
laser, and for He subjected to two-color lasers [18,20]. Most recently, the 
formalism has been extended to include the nuclear motion as well [20], which 
must be treated fully quantum mechanically when the nuclear probability 
densities do not stay in a tight classical distribution during the motion. It 
is also important to include the motion of all electrons in the outermost 
shell [20], which is not done in the single active electron (SAE) model in the 
traditional wavefunction approach [83]. 

6.2  Linear  response and  a little beyond  

Many applications of time-dependent density functional theory have been in 
the linear response regime [16]. Calculations of photoresponse have been per- 
formed on atoms [21,84-88], molecules [89,90] and clusters [91-101] metallic 
surfaces [22-25,102-104] and semiconductor heterostructures [105-109] bulk 
semiconductors [110] and bulk metals [111-114]. 

For sufficiently long wavelengths, the electric field experienced by the 
system is spatially uniform, and the dipole approximation holds. For a finite 
system, the dynamic polarizability is 

d3r z nl(r, ) (95) 

and the photoabsorption cross section is 

47rw 
a(w) = ~a(w). (96) 

c 

Most calculations of this kind have used the ALDA in the past, with rea- 
sonably good results. A similar formula defines the Feibelman d-parameter, 
d±(w), which characterizes the surface response in the long-wavelength limit 
and determines, e.g., the initial dispersion of the surface plasmon [115]. 

Another off-shoot of these calculations is the question of incorporating van 
der Waals forces into density functional approximations. Because these forces 
arise from dynamic fluctuations at separated points in the system, there is 
no (transparent) way to build them into a local or semilocal (GGA) ground- 
state exchange-correlation energy functional (but see [9,10]). A more natural 
language is that of dynamic linear response. Thus approximations for a(w) 
lead to predictions for C6, the coefficient of the 1/-R 6 attractive potential 
between two widely separated neutral species [116, 8], or the C3 coefficient of 
the 1/R 3 potential between an atom and a surface [117,118]. Furthermore, 
some approximation for fxc, inserted in the linear response formula and then 
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inserted in the adiabatic connection formula for the exchange-correlation en- 
ergy, will produce an energy estimate which includes van der Waals forces, 
at both small and large separations [11]. 

Senatore and Subbaswamy [119] have found explicit expressions for the 
response up to third order, while Gonze and Vigneron [120] have calculated 
the static case. Recently [7], it has been shown how to go to arbitrarily higher 
order response functions, order-by-order. Interestingly, the k-th order density 
response satisfies an integral equation whose kernel is independent of k, i.e., 
is the same for any order, but whose driving term depends on all k - 1 lower 
order solutions: 

nk(x)= Mk(x)+ f d4x ' f d4x"Xs(x',  '') (97) 

(This corrects Eq. (185) of Ref. [7], which contains typographical errors.) 
Therefore once the first-order response is found, the next can be found by 
the same means, once the driving term is constructed. 

6.3 Excitat ion Energies 

The linear response of any system can be used to determine its excitation 
energies. Simply apply an oscillating potential and vary its frequency, and 
a resonance occurs whenever the frequency equals the difference of two en- 
ergy eigenvalues of the system. This familiar physical statement can be used 
to great effect in time-dependent density functional theory, since the exact 
susceptibility X must therefore contain poles at the exact excited state en- 
ergy differences. To see this explicitly, we rewrite (42) and (43) as an integral 
equation for the first-order density response in terms of only the Kohn-Sham 
susceptibility and the exchange-correlation kernel: 

/d3r ' {5(r-r')-/d3r"xs(r,r";w) f.xc(r',r";w)} nl(r',w) 

=/d3¢ Xs(r , r ' ;~)  vl(r ' ,w) (98) 

where the driving term contains the external potential. Since the true exci- 
tation energies [2 are generally not identical to the Kohn-Sham excitation 
energies, the right-hand-side remains finite as w -+ 12, whereas nl has a pole 
at 12. The operator acting on nl cannot be invertible here, so its eigenvalues 
must vanish, i.e., writing 

/ d3r ' / d3r '' xs(r,r';w)f.xc(r',r";w) ( ( r " , ~ ) =  )~(w) C(r,w) (99) 

we have )~(Y2) = 1. This is an exact condition for determining the excitation 
energies of the system. 
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In practice, we usually don' t  want the full frequency-dependence of the 
functions in (99), which contain a vast amount of information on the response 
of the system. In the case where the poles are well-separated, we make a 
single-pole approximation (SPA), where we expand everything about a sin- 
gle Kohn-Sham energy difference, assuming the difference between the true 
excitation frequency and the Kohn-Sham one is smaller than the difference 
between energy levels [26]. We then find 

= + - :5) / d [ ¢/(r) :.xo(r, r';,.) 
o" .J 

(100) 
This expression estimates the leading correction to the Kohn-Sham eigen- 
values as excited state energies. It was used [30] to calculate the energies 
displayed in Fig. 2, starting from the exact Kohn-Sham orbitals, and using 
the self-interaction corrected adiabatic local density approximation for the 
exchange-correlation kernel. 

These formulas have been applied to excited state calculations for atoms 
with considerable success [26], in the sense that the excitation energies are 
always improved, often significantly. The Kohn-Sham eigenvalues do not dis- 
tinguish between the spin states of the excited states. When the excited state 
is degenerate at the Kohn-Sham level, the correction usually splits this degen- 
eracy. In particular, the spin-dependent version of (100) yields the separate 
singlet and triplet levels, raising the singlet and lowering the triplet [28]. It 
is important to begin with a good approximation to vxc(r) for the ground- 
state, since the orbital energies, especially of the higher lying states, are very 
sensitive to the decay of the potential [27]. Beyond that, the time-dependent 
X-only approximation to fxc is usually better than fALDA, while the correl- 
ation correction within ALDA is usually in the right direction. 

Other routes to excited state energies are also being explored, such as 
ensemble DFT [121-131], ASCF theory [132-134], and GSrling-Levy pertur- 
bation theory [135,136]. It remains to be seen which will provide the best 
approach to the problem. Very likely, each of the various approaches will 
suggest its own approximations, etc., and be useful in its own way. 

7 O u t l o o k  

The purpose of this chapter has been to review the current state of time: 
dependent density functional theory, especially for those who are more famil- 
iar with the traditional ground-state formulation and applications. 

We believe that  this subject is about to see an exponential growth in 
interest, as practical approximations are currently appearing and being de- 
veloped, which should lead to applications in areas of chemistry [137], such 
as laser-induced photochemistry [138]. We anticipate that ult imately it will 
reach the same level of development and application as the ground-state the- 
ory currently enjoys, in both physics and chemistry. 
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1 I n t r o d u c t i o n  

A few numbers will illustrate that  it is necessary to develop a relativistic 
version of density functional theory (DFT) [1-6]. The relative relativistic 
correction 

Arel -- Anrel 

Anret 

is about 30% for the ionisation potential of the Gold atom, - 1 3 %  for the 
bond length of the A u H  molecule and about 50% for the dissociation energy 
of this system [7]. The error can even be larger for sensitive quantities like 
the electron affinity. For this quantity one finds 

A,~ret = 0.10eV Aret = 0.67eV 

on the level of the Hartree Fock (HF) approximation [8], and 

A ~ t  = 1.02eV Ar~t = 2.28eV 

on the level of the configuration interaction approach [7, 9]. Obviously, rela- 
tivistic and correlation effects modify results on a comparable level. 

While it is still possible to deal with relativistic effects in smaller systems 
in terms of traditional methods, the treatment of larger systems with heavier 
constituents will require a relativistic extension of DFT (RDFT).  One of the 
questions that  has to be answered in this context is: How much of the rela- 
tivistic correction is due to kinetic effects (replace the nonrelativistic kinetic 
energy by its relativistic counterpart) and how much is due to exchange- 
correlation effects? The answer to this and other questions is the goal of our 
endeavours. 

The proper frame for the discussion of RDFT is a suitable field theoretical 
formulation [10-12] of the problem at hand. For the case of Coulomb systems 
such a theory is quantum electrodynamics (QED). One might ask: Why not 
base the discussion on the many-body Dirac equation, as eg. in standard 
Dirac-Fock calculations? 

Here is a more extensive answer. As one knows, Dirac theory leads to a 
positive definite one particle density 

= = ¢+(x)¢(x) 
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On the other hand, the energy spectrum contains a negative energy contin- 
uum. In order to prevent disaster, one has to invoke the concept of a filled 
Dirac sea. Holes in this sea can be associated with antiparticles. 

One possibility to handle this situation in an economic fashion is the 
transition to a field theoretical formulation, which is, for present purposes, 
indicated for the case of the free particle problem. The free Dirac equation 
(with h = c = 1, as usual) is 

0 
(-iO + m ) ¢ ( ~ )  = 0 , ~ = 7"0~ = 7" ox~ (1) 

A general solution of this equation (a spinor wave packet) is 

2 

= f E + q , = + l=1  

The notation is 

- positive, negative energy spinors u(t), v(O 
- energy-momentum four vector k = (k0, k) 
- Minkowski space scalar product k . x = ko t  - k • x . 

In the process of field quantisation the spinor wave functions are replaced by 
field operators, 

¢ ( x ) , ¢ + ( x )  -.. ~ ¢ (~) ,¢+(~)  , 

by demanding that  canonical, equal time anticommutation relations hold, 

{¢~(x_,t),¢~-(y,t)} = 5 ~ 5 ( 3 ) ( x -  y) (a , f l  = 1 , . . . 4 )  . (2) 

This requires that  the Fourier coefficients bt, cl be replaced by operators, 

bt(k) -~ b~(k) br(k ) -~ b~+(k) 

c , ( k )  --+ ~ , ( k )  c ; ( k )  --~ ~ + ( k )  . 

In order to incorporate the concept of the Dirac sea directly, one reinterprets 
the operators associated with the negative energy solutions as 

~t(k) -~ d~+ (k) ~+(k) -~ dr(k) , 

the interpretation being: The destruction of a particle with negative energy 
corresponds to the creation of an antiparticle with positive energy (and vice 
versa). This language refers to a vacuum state that is free of particles rather 
than the filled sea, 

t , z ( k ) l v a c  > =  0 , d t ( k ) l v a c  > =  0 . 

The corresponding relativistic field operator 
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2 

1=1 

(3) 

then describes the destruction of a particle or the creation of an antipar- 
ticle. ~+(x) describes the creation of a particle and the destruction of an 
antiparticle. Other operators can then be constructed like 

(i) the charge operator 

2 

Q= -e f d3k E [b+(k)bt(k)-d+(k)d,(k)] (4) 
l=1  

-~ - - e (  JVpart  - -  ] V a n t l p a r t )  , ( 5 )  

where infinite but trivial vacuum expectation values have been subtracted. 
One then notes that  ~b(x) raises the charge by one unit, while V)+(x) de- 
creases the charge correspondingly. 

(ii) the free Hamiltonian 

_ft = f d3x ~ ( x ) ( - i 7  ' V  + m)¢(x) (6) 

2 

= / d3k E[b+(k)bt(k)  - d,(kld+(k)] k0 
/----1 

2 

= ] d3k ~-~fi+(k)b,(k) + d+(k)dz(k)] ko + ~ , (7) 
/=1  

so that  one can redefine the trivially renormalised Hamiltonian 

[IR ~ IYI- < vaclI:Ilvac > = f a~k k0{go~t(k)+No..port(k)} (s) 

Contrasting once more energy and charge in Dirac and field theory we note 
for a free particle (charge -e)/antiparticle:  

I charge energy 
Dirac theory negative definite positive/negative 
field theory negative/positive positive definite 

Obviously, the second line corresponds to the experimental solution. 
In addition, the field theoretical formulation of the interacting problem 

(the coupling to the electromagnetic field can be introduced by invoking local 
U(1) gauge invariance) involves for instance the features: 

(i) The interaction between the fermions is described by the photon propaga- 
tor rather than the Coulomb interaction. In lowest order this propagator 
describes the exchange of a free photon, 
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D(~ (x, y) > , . ~ , " v ' ~  

It contains retardation and magnetic effects. One may even consider more 
exact forms like 

D t , ~ ( x , y ) =  ~ + ~ + . . .  , 

involving lowest order vacuum polarisation effects. 
(ii) The full machinery of many-body physics [13, 14] can be activated di- 

rectly, with fermion propagators, Dyson equations etc. 

If one accepts these statements as an answer to the question posed, then one 
can start to look at a selection of the background material that is necessary 
for the discussion of RDFT. This is done in section 2, which is entitled 

2 A s s o r t e d  R e m a r k s  o n  V a c u u m  Q E D ,  t h e  R e l a t i v i s t i c  

H o m o g e n e o u s  E l e c t r o n  G a s  a n d  Q E D  w i t h  E x t e r n a l  
P o t e n t i a l s  

A system of Dirac particles (charge -e )  and antiparticles, which interact by 
the exchange of photons is characterised by the QED Lagrangian density 

£.QED(X) = £e(x) + £~(x) + £.i,~t(x) • (9) 

The three terms represent the free Dirac Lagrangian of the fermions 

i ~ / t  ^ 
£e(x) = ~[¢(x)-y Ot, V(x  ) - (a~,$(x)).~t'¢(x)] - m $ ( x ) ¢ ( x )  , (10) 

the free photon Lagrangian 

(11) 

and the interaction term 

f-,{,~t (x) = -e. j" (x)A~ (x) . (12) 

The following explanatory remarks are necessary. 

(i) ¢(x) and .4u(x) are the fermion and photon field operators, the actual 
electromagnetic field is characterised by the field tensor 

= 0 A (x) - (13)  

)" (x) is the fermion four current. It is most conveniently specified in the 
commutator form 

1 
)~'(x) = ~[~(x),'y~¢(x)] , (14) 

which explicitly expresses charge conjugation invariance. 
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(ii) The quantisation of the free photon problem is more complicated due to 
the transversality of the photon field. The form of the Lagrangian spec- 
ified refers to a covariant gauge (and thus involves the so-called gauge 
fixing term). Standard gauges are the Feynman gauge (A = 1) and the 
Landau gauge (A = oc). The photon sector of the Fock space is supposed 
to be specified in terms of the Gupta-Bleuler indefinite metric quantisa- 
tion. We will, however, not display any details concerning this point. 

Essentially, all results available for (vacuum) QED systems are based on 
perturbation theory. The basic quantities used in this context are the fermion 
and the photon propagators (where T denotes time-ordering) 

SF, vac(X, y)~z = --i < vaclT~c.(X)-~(y)[vac > (15) 

= f d4p SFvac(P)c,3 e-iP'(x-Y) (16) 

Dt,., .ac(x , y) = - i e  ~ < vaclTf i~,(x)A.(y) lvac > (17) 

d4q D .  . . . .  (q) e - iq (x -y )  (18) 

The fact that  both quantities depend only on the difference of the Minkowski 
coordinates is an expression of the translational invariance of the theory. 

In lowest order, these propagators can be calculated directly. For the 
fermion propagator (describing the time development of a free fermion for- 
ward and of a free anti-fermion backward in time) one finds 

(0) ( y~+rn ) (19) 
SF,vac(P)~Z "= p2 _ m 2 + ie sO 

In diagrammar this quantity will be denoted by 

(0) P S F , ~ ( p ) ~  _- a . 3 (20) 

The photon propagator depends on the choice of gauge. In Landau gauge one 
finds 

47re2 ( q d  ~ ~ (21) 

the second term in the bracket is not present in Feynman gauge. In diagram- 
mar we represent this quantity by 

q 
iD(~(q)  = #~/~z~.f~ u (22) 

We shall later use the decomposition of this propagator into a nonretarded 
Coulomb (longitudinal) and a transverse contribution, 

D(°~ ) (q) = D(°~ )L (q) + D(f )T (q) , (23) 
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with the longitudinal part 

4rre 2 D(O)i(q) = go~,go~ (24) /~u q_2 

The link between the propagators is provided by the vertex, which describes 
the emission and the absorption of a photon by a fermion. In momentum 
space, the lowest order vertex just corresponds to a 3,-matrix provided one 
implies four momentum conservation 

> ~ i  - P2 

F(°)(Pl,P2),~ = 7. Pl ~ "~x P2 (25) 

In the next order of perturbation theory (characterised by an additional free 
photon line), the contributions are 

q 

(1) ~ (26) SF,,o (p) = p p p - q  

P 

iD (1) (-~ (27) 

p - q  

From these diagrams one extracts the lowest order contributions to the basic 
two point functions of the theory: the electron selfenergy, 

( ~  " [ d 4 q  D(O)(.~~~s(O) , 
X'(~)(p)= p - q  q = z j ~  u~'~/"  F,vactP--q)7 ~ , (28) 

and the vacuum polarisation, 

1] 

iH(°) (-~ @ - ~,~,,vac,~tJ = P P+ q 
Iz 

f d4p tr[7~SF~a~(p)7~S (P q)] ( o ?  _ . (29) 

In addition, one finds for the next order contribution to the vertex function 
(a three point function) 
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p 2 -  

F O) ('1 P2) = # ~ _ ~  l k  ~ v a c k r  1 

f d4k 
= i j  (2 , )  4 D~°)(k)TPS(°!ac(p z - k)%S(F°~ac(p2 - k)7 ~ . (30) 

If one evaluates the integrals over the loop momenta,  one finds that  neither 
of the three quantities Z(1)H(0)  and F (1) is well defined. One encounters 
UV-divergencies (divergencies due to large values of the loop momenta).  One 
way to deal with these divergencies and to endow the three quantities with 
a meaning is the counterterm technique based on dimensional regularisation 
[15]. In this method one first evaluates the integrals indicated in (1, d -  1)- 
dimensional Minkowski space (rather than in the (1,3)-dimensional space). 
These results can then be analytically continued to noninteger d, so that  the 
physically interesting limit d -+ 4 can be taken. The results (involving an 
expansion about this limit) are 

e2 (1) 
~(1o) (;) = 1_~/" ( s ) (_  ~ + 4m) + ~L~,j,~,t~(p) (31) 

ii(o!.a~(q ) = (q2g~,~ _ q~,q~.) ~ + 

e 2 ~(1) , 
/.(1)p,vac.r(.1,p2) -~ 1-~27r2/"(s)7 p + l • , vac , f i n i t e [P l ,P2 )  . (33) 

The divergent part of the loop integrals is isolated in each case in the F- 
function 

- + . . . .  ( 3 4 )  F ( s ) = _ V  ( 4 - d )  ~ s 

For the finite remainders, the limit d --+ 4 can be taken directly. The rather 
lengthy expressions that result are not of interest for the moment.  

Two additional features might be of interest though: The tensorial struc- 
ture of the vacuum polarisation is a consequence of the general gauge invari- 
ance~ 

q~ ~ , ~ ( q )  = 0 . (35) 

Another manifestation of gauge invariance is the Ward-Takahashi identity, 

(PtL / # / - p , ) F ~ , o ~ ( p , ; )  = ~ o c ( p ' ) -  ~o~(p) ,  , (36) 

which is satisfied by the divergent (as well as the finite) contributions to 
and F. 

The next step, the actual renormalisation, amounts to a redefinition of the 
physical constants and operators in the initial Lagrangian, leaving the phys- 
ical implications of this Lagrangian unmodified. The renormalisation proce- 
dure can readily be demonstrated (on the one loop level) for the case of mass 
renormalisation. Using the Dyson equation 
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S F , ~ ( p ) - I  o(o) , , -1  = '~F . . . .  ~P) -- S,~,~(p) = ff -- rn -- S .a~ (p )  (37) 

one finds to first order 

- -  r n  Z ~ v a c , i i n i t e ( P )  . (38)  ~F, w A P )  = f1 1 + 1--g-~2F(s) 1 + ~-~2F(s)  - (1) 

In order to compensate the terms that diverge in the limit d --+ 4, one adds to 
the "unrenormalised Lagrangian" a "counterterm Lagrangian" of the same 
form. 

The unrenormalised Lagrangian has the form (9) originally given with 
physical constants (rn, e) and physical field operators. The eounterterm La- 
grangian for (fermion) mass renormalisation is 

E.~,CT = ~ ( x ) ( i A ~ -  B)[b(x)  . (39) 

The renormalised fermion Lagrangian is thus 

£~,n  = £~,, . ,~,~ + £~,CT 

= $(x)(i(1 + A ) ~  - (m  + B ) ) ¢ ( x )  . (40) 

Evaluating the electron propagator on the one loop level as before (with the 
same Ei,t)  one finds 

/ e 2 \ 
SF ,v~ ,R(p )  -1  = z l l l  + A + 1---~5~2F(s)) (41) 

- - m  1 q -  - -  -~- . . . .  f i n i t e k  ] " 
m 

The obvious choice 

e2 e2m (42) 
A- -  16~. 2F(s) ; B - -  ~ F ( s )  

leads to a finite result, in diagrammar, 

The additional diagram represents the counterterm contribution 

B (0) 
× = + ]SF, oc(p) . (43) 

The form invariance of the Lagrangian under this renormalisation procedure 
is then implemented by defining the wavefunction (actually field operator) 
renormalisation 

~b~r~(x) = [1 + A] 1/2 ~b(x) (44) 
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and the bare mass 
rebate = m -- ~ m  (45) 

(to the given order), so that 

£~,R = Cbo~(x)( iO- mbo~)~2bo~(x) , (46) 

that  is the counterterms necessary to keep 2: (1) finite have been completely 
absorbed in a redefinition of the ingredients of the (free) fermion Lagrangian. 

An equivalent procedure can be carried out for H(°~oc addressing £-~, as 

well as for F(1)~ addressing Ei,~t. The argumentation can be extended to any 
order, after a discussion of overlapping divergencies, that  occur for instance 
in the diagram 

We shall return to some aspects of the renormalisation problem when we talk 
about the derivation of explicit relativistic functionals. 

We then leave vacuum QED and discuss briefly the simplest relativistic 
many fermion problem: The R e l a t i v i s t i c  H o m o g e n e o u s  E l e c t r o n  Gas  
(RHEG). This system is characterised by a ground state that contains N 
electrons per volume V, 

N 
no = - -  • (47) 

V 
The relativistic version is essentially the same model as the nonrelativistic 
equivalent with the difference that the kinetic energy is replaced by the rel- 
ativistic form and the Coulomb interaction is replaced by the exchange of 
photons. 

The fermion propagator reads 

SF(X, y ) =  --i < ¢0[T(~b(x)~(y))l¢0 > , (48) 

with I¢0 > denoting the ground state of the RHEG. This differs from the vac- 
uum propagator SF . . . .  already in lowest order as SF,,oc describes free elec- 
trons and positrons while SF of the RHEG describes electrons and positrons 
embedded in a medium. 

The result of an explicit, straightforward evaluation can be expressed in 
the form 

s ( / (p)  = s(/).  (49) 
with 

S(O) [p~ ._~ 2ffi (~(pO _ Ep) ~ + m O ( k F  _ IPl) F, Dt  ] ~ _ 

ep = Iv_ ~ + r ~ ]  1/~ ; kF = [a~n0]  1/~ 

(50) 

(51) 
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The quantity in Eq.(50) is the contribution to the propagator due to finite 
density of real electrons. An alternative decomposition of the propagator in 
lowest order can be given, 

= S (°) /p~ (52) s? )(p) s(~° )_(p) + ~ , + , ,  . 

This decomposition contains a contribution due to the electrons, 

S(°) tp' - (~l+ + m) [ O('p[ - kF) O(kF -- 'P'i! ] (53) 
F,+, , 2E~ LY----E-~ + ie + p- -g :E 7 "--= ' 

with 
p~: = (+Ep, p_) , (54) 

(which has some resemblance to the corresponding nonrelativistic propaga- 
tot) and a positron contribution, 

s (O) (p )_  ( ~ l _ + m ) (  - 1  ) (55) 
F,- 2E v pO + Ev _ i~ " 

The lowest order fermion propagator of the RHEG will in the following be 
denoted by a double line 

s(~°)(;)  = , (56)  

The other two basic elements of perturbation theory, the free photon propa- 
gator and the simple vertex, remain unchanged. On the other hand, the full 
photon propagator, which in this case is given by 

D.~, (x ,  y) = - i e  ~ < ¢olT(A.(z)A.(y))I¢o > , (57) 

and the full vertex differ from the vacuum QED result. The reason is that not 
only e + - e -  pairs screen the bare interaction but also virtual electron-hole 
pairs. 

The discussion of the ground state energy of the RHEG is the basis of the 
local density approximation (LDA), as in the nonrelativistic case. We shall 
discuss the necessary details in connection with the explicit consideration of 
this limit in section 4. We shall see there that the renormalisation procedure, 
which is also necessary for this system, concerns essentially only the vacuum 
aspects involved. 

In the discussion of inhomogeneous systems (like atoms, molecules etc.) 
the fermions have to be subjected to an additional external field, which rep- 
resents the fixed nuclei and/or  any other external perturbation present. In 
this case the original QED Lagrangian has to be supplemented by an external 
interaction term, 

,c(x) = ,cqE~ (~:) + z:~,,(x) 

, co . , (x )  = - ~ ) " ( x ) v ~ . ( z )  

(58) 
(59) 
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For the discussion of stationary systems the external four vector is static, 

v.(~) - v.(~_) . (60) 

It will be denoted in diagrammar as 

V ) , . t x ~ r ~  (61) 

One can then show (with the aid of Noether's theorem if necessary) that  the 
corresponding energy is conserved, so that the Hamiltonian is given by 

[-I = [ dax T°°(x) (62) 

= / d3x ~(x) ( - i ~ .  v_ + 17/)~(X) (63) 

:./...{.o..:.>.o..i.> + :..(.>} 

The renormalised Hamiltonian has the form 

f i r  = f i  - V E V  + CT  , (64) 

involving the subtraction of the vacuum expectation value and the addition 
of counterterms analoguous to the counterterms of the Langrangian. 

3 F o u n d a t i o n s  

The first topic is the extension of the Hohenberg-Kohn (HK) theorem [16] to 
the case of relativistic QED systems. 

3.1 The relativistic Hohenberg-Kohn theorem 

This extension was first formulated by Rajagopal and Callaway [17, 18] (and 
by MacDonald and Vosko [19]). As expected for a relativistically covariant 
situation, the theorem states that  the ground state energy is a unique func- 
tional of the ground state four current, 

E0[j ~] = F[j u] + f d3x jt'(x_)Vu(x_ ) , (65) 

with F being a universal functional of ju. There are, nonetheless, a number 
of points that  should be discussed more closely. 

The arguments used in the original proof are based on QED, but the 
question of possible divergencies was ignored. As the proof relies (as in the 
nonrelativistic case) on the celebrated "reductio ad absurdum", one has to 
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make sure that  well defined, finite quantities for the ground state energy and 
the four current are involved [20], 

Eo = < Oo]~I]Oo > -- < vac  ]fie + f-I v + [ t in t t  vac  > + A E o , c T  (66) 

J"(~_) = < ~013"(*_)1~0 > + A j . ( ~ )  , (67) 

that  is quantities including all vacuum subtractions and counterterms (A). 
In addition, one has to make sure that the structure of the counterterms does 
not invalidate the proof. With these precautions, one can establish the usual 
chain of unique maps 

There exists a one-to-one correspondence between the class of external poten- 
tials differing by a static gauge transformation and the corresponding class of 
ground states. This class of physically equivalent ground states is uniquely de- 
termined by the ground state four current. As a consequence one can express 
all ground state observables (including the energy) as a unique functional of 
the ground state four current 

O[J u] = <  O0[J'] I 0 1 o0[J"] > + ~ 0  - V E V .  (69) 

As a side remark one may note, that both the ground state energy and the 
four current are gauge invariant quantities. 

For the case of a purely electrostatic, external potential, 

= , (70) 

the proof can be repeated using just the zeroth component of the four current 
(i.e. the charge density) j°(z_) _-- n(~) [21]. The ground state energy and all 
variables are then functionals of the density alone. It should be emphasised 
that  this does not imply that  the spatial components of the current vanish 
in this case. It only implies that  the three current has to be interpreted as a 
functional of n(x), 

£(_~) = <  ~0[n] I J_(~_) I O0[n] > = j([n], z__) . (71) 

With the Ritz principle, already involved in the details of the proof of the 
HK theorem, one may formulate the basic variational principle of RDFT as  

5 {Eo[j"]-p f d3yj°(y)}=O (72) 
5j~'(x_) - . 

The subsidiary condition implies charge (rather than number) conservation. 
This variational principle is utilised directly in relativistic extended 

Thomas-Fermi (RETF) models [22,23,20], in which an approximate density 
functional representation of E0[ff] is specified. The mainstay of applications 
are, however, the 
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3.2 Relat ivist ic  Kohn-Sham equations 

The first step necessary to set up this scheme [24] is the representation of 
the exact four current of the interacting system in terms of auxiliary spinors 
[20], 

j~ (x) = j ~  (x_) + j~  (x_) . (73) 

The vacuum polarisation current J~ac is given as [25] 

Ek_<--m --m<~k 

where we do not specify a necessary counterterm in this equation and in the 
following. The current due to occupied discrete orbitals is 

j~) (x_) = E ~k (x)~f ~ ~k (x) . (75) 
- - m (  ek ~6.F 

This result follows directly from the charge conjugation invariant form of the 
four current operator (which has been specified beforehand) if one considers 
a system of noninteracting particles. 

In the same vein one defines the noninteracting kinetic energy (including 
a mass term) 

(76) 

(77) 

Ts[j ~] = Ts,voc[j ~] + T, ,v[ j  ~] , 

'I { 

--m<ek <eF 

T,,~c is the kinetic contribution to the so-called Casimir energy [11] (again 
no counterterms displayed), while T~,D results from bound real electrons. 

Adding and subtracting T, as well as the covariant Hartree energy, 

E'[j~I = 7 e3x e4y (~) D(.~(x - y) j~(y) , (79) 

for time independent currents 

e2 S S ff (x_) j.(y) (80) 

to the total energy, one can rearrange the ground state energy as 
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Eo[j"] = T,[j"] + E~,:t[j"] + EH[ff]  + E,:c[j ~'] , (81) 

with the exchange-correlation energy 

E:~[j ~'] = F[j ~'] - Ts[j"] - EH[j ~'] (8~) 

as usual. 
Minimising E0 with respect to the auxiliary orbitals leads to the most 

general relativistic Kohn-Sham (KS)-equations 

~o{ _ i z .  _v + m + e~(~)  + ~.  (~) + ¢ = ( ~ ) } ~  (~_) = ~ ~ ( ~ ) ,  (83) 

with the effective potentials 

if(Y) (84) v~(~-) = e ~  d% i~__y I 

v;~(x_)_ 5E~c[j"] (85) 
~j~(~_) 

This set of equations has to be solved self-consistently, leading in principle 
to the exact jt,(x_) and hence energies etc. 

A glance at the ingredients of the general relativistic KS-scheme reveals 
a problem of considerable difficulty. For instance, the evaluation of the vac- 
uum contributions (in j~ and T~) requires summation over all negative and 
positive energy solutions (as well as renormalisation) in each step of the self- 
consistency procedure. All effective potentials involved are endowed with a 
Minkowski space structure. 

Fortunately, for practical electronic structure calculations two approxi- 
mations are possible: 

1. The most important simplification arises from the no-sea  a p p r o x i m a -  
t ion ,  in which all radiative corrections are neglected 

j ~ a c = 0  T , , : a c = 0  E : ~ , , : ¢ = 0  . (86) 

If necessary, one may evaluate these contributions perturbatively, that  is 
after self-consistency has been achieved without these terms. This approx- 
imation should be useful for all systems of interest, with the exception 
possibly of super-heavy atoms. 

2. For the case that  the external potential is purely e l e c t r o s t a t i c  (a sit- 
uation commonly encountered in electronic structure calculations), the 
charge density is the only relevant variable, for instance via 

k ~ [ . ]  = s ~ [ . ,  j[.]] , k = [ . ]  : Exc[-, J N ]  . (87) 

As a consequence the Hartree and the xc-potentials  only consist of a 
time-like component (rather than a four vector structure), so e.g. 
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with 

= o) (88) 

5EH[n] 5Eg[ff]  ~-., f dax, SEg[f f]  5jk(x-/) 
- - + ' '  (89) 

k 

as there is an explicit functional dependence of j.  

The resulting e l e c t r o s t a t i c ,  no - sea  K S - e q u a t i o n s  are (all - are dropped) 

{ - i~_.V__+ Brn + V~:t(x_) + VH(X_) + v,¢(x_)}¢k(x) (-k~k(X.~)  , (90) 

where the density and the three current are given by 

n(r) = ~ ~0+ (x_)~0k (x_) (91) 
- - r n < e k ( e f  

j(_r) = ~ ~+ (x_)~ ~,~ (x_) . (92) 

One should note that  the exact current j[n] has been replaced by the KS 
current J(t).  The KS current is not necessarily identical with the (unknown) 
functional j[n], but expected to be an acceptable approximation. In any case, 
possible differences that  arise (eg. from inserting j[n] in the transverse Hartree 
energy) are absorbed in a redefinition of E~c. 

One may also decompose the interaction mediated by the free photon 
propagator into a Coulomb (longitudinal) and a transverse part (as discussed 
before) 

e2__.....~ 5(xo _ yO) + D~.(x  - y) . (93) D(°v ) (x - y) -.--- g~og,ol _ _ 
x - y  I 

If one neglects the transverse part, one obtains the longitudinal limit of 
RDFT, which corresponds to the use of the Dirac-Coutomb Hamiltonian, 
a kind of standard in quantum chemistry. Inclusion of the transverse term 
recovers the retardation and magnetic effects, which are usually included in 
a weakly relativistic limit in the form of the Dirac-Coulomb-Breit (DCB) 
Hamiltonian. 

One of the problems often encountered in the application of DFT is to 
ensure that  self-interaction effects contained in the Hartree term are properly 
cancelled by the x-energy functional. This problem can be handled if one 
defines the x-energy in terms of KS-orbitals. For this purpose one starts with 
the definition of the covariant exchange energy 

z j  j 

If one evaluates the propagator in the KS-picture, 
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sF ~ s I~s = - i { o ( ~  ° -  y0) ~ ~ . ( : )  ~.(y)~.p[_i~.( .0 _ y0)] (95) 

- °(Y° - ~°) 5--]- ~-(:)e-(-~) ¢~p[-i~-(x° - Y°)]} , 

and uses the Feynman gauge for the photon propagator,  one obtains in the 
electrostatic, no-sea approximation the relativistic Fock term 

e 2 cos(~kt I : -  y I) 
I:-_yl 

× ~k ( : ) 'y .  ~'~ (:) ~ (_y)'~" ~,k (y) , 

(96) 

with 

wkz = l ek -- e~ I • (97) 

The functional dependence of Eft s on n arises via the functional dependence 
of the KS-orbitals on n. The correlation energy is then 

E ~  s = Exc - E ~  s (98) 

The x-potential  corresponding to E~ s can not be evaluated directly via 

6E~S[n] (99) K S  v. ( : ) -  ~,~(:) 

In order to obtain this quantity, one has to activate the relativistic extension 
of the 

3.3 O p t i m i s e d  p o t e n t i a l  m e t h o d  

The optimised potential  method (OPM) [26-30, 21] relies on the fact that  the 
functional derivative of an energy expression with respect to the density can 
be evaluated with the aid of the chain rule 

~(x_) - g~i(x_') ~vKs(x") ~n(x_) + c.c. , (100) 

if the dependence on the density is implicit via the orbitals. The quan- 
t i ty gvgs(x_')/gn(x_) is the inverse K S  response function. For the functional 
derivative of the orbitals with respect to the potential  an explicit result can 
be derived from the K S  equations (which also allows the direct evaluation of 
the K S  response function) 

Gk (x__, Y)~k (Y) (101) 
~v~:s(~) 

with 
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~,(~_)W(y) (102) Ok(x, y) = ~ (~ _ ~k) 
- r n <  el < rn,l=fi-k 

Finally, the functional derivative of the energy with respect to the orbitals is 
known if the energy is specified as E = E[~oi, ~i]. 

The standard procedure can readily be applied to the exchange term 
(analoguous to the original derivation given by Talman and Shadwick [27]) 
and leads to the ROPM integral equation for the x-potential 

d3x 'K(x_ ,  x_')v,(x__') = O(x_) , (103) 

with 

K(~,  ~') = ] ~  ~+(~_)Vk(~, ~_')~k (~_') + c,c. (104) 
- - m < e A ' < ~ F  

,. ~ E f  s[~] 
Q(~_) : ~ d3x ' ~z(~_)G~(x_, ~_) F;~7+(~Z + c.c. , (105) 

--rn<ek <<ef 

which corresponds to the electrostatic, no-sea limit. A covariant extension 
can readily be derived. 

This integral equation has to be solved self-consistently together with the 
KS-orbital equations. In this fashion one establishes the functional relation 
between v K s  and n,  implicitly. One advantage of the OP-method is (as ad- 
vertised) the fact that  self-interaction effects are cancelled correctly. If one 
adjusts a trivial constant, so that 

v~(~ --~ ~ )  = 0 (106) 

one finds for finite systems the asymptotic behaviour 

vfo~ (~ _~ ~ )  : __1 . (107) 
r 

The OP-procedure can be applied for the full x-energy (longitudinal as well 
as transverse). It produces spinor solutions that do not depend on the gauge 

of the free photon propagator n(0) justifying in retrospect the use of the ~ D b '  1 

Feynman gauge in the definition (By contrast gauge problems arise for the 
transverse, nonlocal, orbital-dependent Dirac-Foek exchange). 

As the three current 3(x) is a trivial functional of the orbitals and the 
orbitals are functionals of the density, the procedure establishes (indirectly) 
a functional dependence of the form 

j / S , O P M  -- j K S [ n ]  . (108) 

The self-consistent OPM-procedure is much more involved than the direct 
KS-scheme. For this reason a search for some shortcuts seems mandatory.  
This aspect as well as a valuation of numerical results will follow later. 

As a final point of this section on fundamentals, we take a brief look at the 
weakly relativistic limit of the theory and the connection with nonrelativistic 
current density functional theory [31-33]. 
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3.4 W e a k l y  r e l a t iv i s t i c  l imi t  

The standard weakly relativistic limit of the QED Hamiltonian can be ob- 
tained with techniques as the low order Foldy-Wouthuysen transformation or 
by direct expansion. The results (all constants reinstated in this case) is the 
Pauli-type Hamiltonian 

f { ~-mm [ c e2 V__(x_)2] (109) ~[p = d 3x ~+ (x) ( - i h E )  2 q- 2ih e V(x_) . ~7 + -~ 

- - -  ~ .  v__ × E ( ~ _ )  + ~ v 0 ( ~ _ )  ~ ( _ ~ )  + ~qee - 
2 m C  - -  

The notation implies 

- 93(x) is a nonrelativistic field operator with a two component structure 
- £ are the Pauli matrices 
- He~ represents the standard Coulomb interaction as the limit of the rel- 

ativistic e- - e- interaction. 

~ V 2 is For the further discussion it is relevant to note that the gauge term ~ _ 
of order 1/c 2, while the other terms are at most of order 1/c. 

The weakly relativistic limit of the three current operator can be extracted 
with the same techniques leading to 

3"p(x) - e_ ~7 x m__(x_) - eL_ __V(x_)h(x) . (110) 
- -  - -  C m e  

I t  contains the paramagnetic current operator 

~(x_) = ih [95+(x_)(~7~b(x_))_ (~7~b+(x_))qb(x) ] (111) 
-~mm 

the magnetisation-density operator 

r e ( x )  - ~ h  
- -  2 m e  ~ + ( ~ _ ) z ~ ( ~ _ )  , ( 1 1 2 )  

and the standard density operator 

h(x__) = ~b+(x__)~(x__) . (113) 

In discussing the gauge structure of the problem at hand, some difficulties 
seem to arise. One first notes that  the Pauli Hamiltonian is invariant under 
the gauge transformation 

~'(x_) = e-iex(~/n~(x_) ; V'(_x) = ___V(x) - cE  A(x_) , (114) 

that  is 
[-Ip(~', V ' )  = H p ( ~ ,  V )  . (115) 

Concerning the currents one can state that  the paramagnetic current )p(x) 
is not invariant under this gauge transformation, but the combination 
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~ ( z _ ) -  e __V(z__)~(z__) (116) 
/ T t C  

and hence the total  nonrelativistic current j (x)  is invariant. 
The problem arises if one reexpresses t-he Hamiltonian in terms of the 

(physical) current and density operators 

Hp = ~ +// . .  
e 2 ^ 2 

This form suggests that  n and j are the basic variables of the theory, but 
it is not possible to prove a HK-theorem with this Hamiltonian,  establishing 
E0 = E0[n,j] ,  which seems to contradict the statements of R D F T  at first 
glance. The resolution of this d i lemma is the fact that  not all terms of order 
1/c 2 are included in/ : /p ,  i.e. the Hamil tonian is not consistent with respect to 
an expansion in 1/c. The contribution to f / p  which does not allow the proof 

e 2 V 2 of a HK-theorem is the gauge term ~- _ This means: If one neglects all 
terms of the order 1/c 2 consistently, the proof of a HK-theorem with n and j 
as basic variables is possible. It remains to be investigated whether inclusion 
of all terms of order 1/C leads to a consistent gauge invariant result to that  
order. 

4 F u n c t i o n a l s  

Applications of R D F T  may, as in nonrelativistic DFT, either use the KS- 
scheme or RETF-methods .  In the first instance knowledge of 

E,c[j"]  resp vxc([ju],_x) 

is required. For RETF-appl icat ions  one needs, in addition, an explicit density 
functional representation of the noninteracting kinetic energy 

T, = r~ [j"] . 

We shall s tart  the discussion by consideration of E,c.  The simplest approxi- 
mat ion for this quanti ty is obtained in the 

4.1 Relativistic local density approximation (E~c) 

The procedure used to establish the relativistic LDA (RLDA) is exactly the 
same as in the nonrelativistic case [4]. One calculates the energy density of 
the relativistic homogeneous electron gas (RHEG) and replaces the constant 
density no by a locally varying density, 

fd ' .  RHEC = e,c (no = n(x_)) . (118) 
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A dependence on the three current does not occur, as the spatial current 
vanishes for a homogeneous system 

jRHEG = 0 . (119) 

In the nonrelativistic case rather accurate Monte Carlo results [34] are avail- 
able for the correlation contribution (the x-contribution can be obtained an- 
alytically). No Monte Carlo results exist in the relativistic case. This means 
that  one has to s tar t  from scratch with the evaluation of d iagrammat ic  con- 
tributions, as far as this is possible. 

The difference compared to the nonrelativistic case is the fact that  evalua- 
tion of the various contributions to . .RHEG is more involved in the relativistic 

..RHEG case. We shall demonstrate  some of the details for the simplest case % 
which is given by (see eq.(94)) 

+~u~a 1 f = -~ d 4 y D ( ~ ( x  - y) t r[S(~>(x  - y ) 7 " S ( ~ ) ( y  - x)7 u] + C T -  V E V ,  

(120) 
where the fermion propagators are the propagators of the RHEG. Going over 
to m o m e n t u m  space, one has 

%RHEC = ~ j(-~~)41 f d4q j_(~._~ D(~(q) t d4p [S(~ ) (q - p)+'/~ S(~)(p) 7 u] (121) 
+ C T  - V E V  . 

In d iagrammar  the loop integral and the VEV look like this, 

+~ = ~ - + CT (122) 

The electron propagators  in the first term decompose into a vacuum and 
density part.  Thus the x-bubble corresponds to 

D D 

D D 

Only the density-density loop gives a finite contribution. In the three remain- 
ing terms we recognise the divergent vacuum polarisation 

C) 
and the selfenergy insertions 
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The first term is cancelled by the VEV, the (identical) selfenergy subgraphs 
have to be renormalised by appropriate counterterms, 

D 
eRHEG i [ 2 {  ~ -- } ~ ]  (123) = ~  ~ + . 

D D D 
The first term is thus seen to contain the renormalised vacuum-selfenergy 
insertion, 

e.X, 1RHEG : -i / ~ d4p tr[S(~)(p) Z~(I~) ~(p)], . (124) 

This term vanishes for the following reason. The propagator SD (p) contains 
the factor (~ + m) and the renormalised selfenergy insertion satisfies the 
on-shell condition 

[(~ + m~( ' ) ,  voc,~e,~(P)] = 0 . (125) 
pg~m2 

Thus only the finite density-density term remains. All vacuum corrections 
have been eliminated by the standard renormalisation scheme. The remaining 
term 

eRHEG l/ d4q D~Od(q) tr{S(FO)D(q__p)~/~S(~)D(p)~/~ } 
ag,2 ~ ex = ~ (271.)4 (27i.)4 

(126) 
can be evaluated in a straightforward manner [35-37], giving 

= - ~ k ~b~(fl) (127) 
3[r/ 1 ]2 

• ag(fl) = 1 - ~ ~ - ~-~ arsinh(fl) (128) 

f l -  (3rr2n°)l/3 - -  kF 7 = ( 1 + 3 2 )  1 / 2  (129) 
7~ 7/'l 

Using the decomposition of the photon propagator into a longitudinal and a 
transverse part, one can split _RHEG into corresponding contributions [38], Gag 

L 5 1 27/ 1 (  arsinh(fl)) 2 
~ (/3) = ~ + ~ + ~-fiarsinh(fl) - ~-~ 2714 ln(~) - ~ ,3r/ /32 (130) 

r 1 1 27 274 ( 3  arsinh(fl) "~ 2 
~x (fl) -- 6 3/~ 2 ~-4 f12 J ~--~arsinh(fl) + ln(,~) - (131) 
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The variation of the relativistic correction factors is illustrated in Fig.4.1 of 
[6]. One finds that  the longitudinal part does not differ very much from the 
nonrelativistic limit. The transverse correction factor is negative and small 
for low densities. It grows, however, sufficiently in magnitude so that  the total 
x-energy density changes sign at about /3  = 2.4. As for instance the maximal 
density in Hg amounts to/3 ~ 3, one realizes that relativistic effects should 
be relevant for the inner shells of atoms. 

One may look a bit more closely at the transverse part. It can either be 
decomposed into a magnetic and a retardation contribution or one may con- 
sider expansion in the weakly relativistic limit, giving the Breit contribution. 
One then finds that  retardation and magnetic effects have opposite signs, the 
latter is dominant though. The Breit limit reproduces the exact transverse 
correction factor over the full range of density values of interest quite closely. 

The calculation (including the renormalisation) becomes more involved if 
one addresses correlation contributions. As a mat ter  of fact the only correl- 
ation contribution that  has been evaluated is the relativistic random phase 
approximation (RPA) [35, 37, 39,40]. It corresponds to the following diagrams, 

--~exc = -{- q- . . .  

+ CT, 

where the vacuum subtraction and the fact that counterterms are necessary 
has been indicated. Just to illustrate the diagrammatic games, we give an 
alternative representation of the diagrams 

. . . , 

which indicates that  the RPA corresponds essentially to an exchange type 
term, in which the free propagator (that is the free interaction) is replaced 
by a specifically screened interaction. We will not go through the messy de- 
tails of further processing the corresponding equations, but rather look at an 
indication of the final result in diagrammar, 
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-$ec, s -- ~ -[- . . . .  

Here the D in the electron loops indicate that only the electron gas part has 
to be inserted there 

D D 

= s 4 ~ , D ( q )  = + + 

D D 

The wiggly line with Dv is the full vacuum photon propagator 

with 

Du~',v(q)~n = gu~" Dy(q)~,~ (in Feynman gauge) (132) 

Dw(q)~e. = D(~)(q) 
1-D(~)(q)II .~(q) .e .  

(133) 

The series of RPA-subdiagrams can be resummed [35,37,41] leading to a 
structure of the form 

" "  I ,J,,,E1 } e c ex ~ - ~ { .  -t- DH]-4- DII (134) 

for both the longitudinal and transverse contributions. These integrals have 
only been evaluated in some approximations. In the n o - s e a  approximation 
the full photon propagator is replaced by the free propagator, 

D~(q)~e~ --~ D(°)(q) . 

In the no-pair approximation (corresponding to the standard procedure in 
quantum chemistry) one also uses the free photon propagator and evaluates 
in addition the polarisation insertion as 

H(°)(q),~o_p~i~ = + ~  + , (135) 

with the electron propagator on the basis of the decomposition (52). Thus in 
both cases one neglects the screening effects due to the vacuum. In addition, 
there is a (slight) difference in results due to the different evaluation of the 
polarisation insertion [42]. 
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Even with these approximations the final result can only be obtained 
numerically. Writing the longitudinal as well as the transverse contribution 
of the no-sea result in the form 

= ) (136) 

one finds tha t  the correction factors can, as in the case of exchange, can be 
quite substantial  for higher densities [6]. 

Further diagrams have not been evaluated for the relativistic homoge- 
neous electron gas, but a number  of high density limits are available. To 
second order (e 4) two additional correlation diagrams contribute, 

Both diagrams require renormalisation beyond the vacuum subtraction indi- 
cated. In the high density limit one finds [43] for their total  contribution, 

e~2)(n0) ---+ - - k  4 3.18-4- 0.12 
~ > > I  1271-4 F - -  

In addition the two loop contribution to the screened exchange [43], 

(137) 

which is not contained in the no-sea approximation,  can also be calculated 
in this limit, 

\1n(23) . (138) e(2)(n0) ~>--~>1 127r 4 F 

By comparison, for the no-sea RPA-result one has [35,37] 

) ~>>, 1--~-~4 k - 7.796 . (139) 

One notes that  in the limit considered, the additional second order contribu- 
tions amount  to about  40% of the RPA value and that  in the extreme high 
density limit the screened exchange contribution eventually dominates over 
all other known contributions. This occurs, however, only for/3 ~, l03, which 
is not relevant for electronic structure calculations. 
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4.2 R e l a t i v i s t i c  gene ra l i s ed  g r a d i e n t  a p p r o x i m a t i o n  (E~c) 

As the x and RPA correlation contributions in LDA are known not to yield 
optimal results (for atoms and other systems) in the nonrelativistic case, 
one has to consider improvements. The next step (thinking of the history 
for nonrelativistie systems) would be direct gradient expansions [44-51]. The 
problem is, that  the corresponding contributions as e,g. 

of the homogeneous electron gas are difficult to evaluate (and have not been 
evaluated) for relativistic systems. In addition, they have not been found to be 
very accurate in the nonrelativistic regime. In order to make some headway, 
we have carried through the following scheme [52, 53]: 

For  t h e  x - pa r t  

S tep  1: Solve the KS-OPM problem for a selection of atoms with closed 
subshells (17 atoms were chosen). 

S tep  2: Use the results to set up a semiempirical relativistic generalised 
gradient approximation (GGA), relying on the form 

GGA / LDA(rt)[Ox,O(fl) q- g(~)~x,2(fl)] (140) E3:,rel In] = d3 x e x 

For the function 9 of the dimensionless density gradient 

= (~-7n)2 / [4n2(3rc2n)2/3] (141) 

we choose nonrelativistic GGA forms. We used the Becke 88 [54], the Engel- 
Chevary-Macdonald-Vosko 92 [55] and the Perdew-Wang 91 [56] forms and 
found that  final results for Ex only varied marginally with g(~). The function 
q~,0 is the LDA relativistic correction factor indicated earlier. For the rela- 
tivistic correction factor ~ , 2  we choose a reasonably flexible ansatz in the 
form of a [2/2] Padd-approximant, 

~ 2(fl) = ao + a l f l  2 + a2fl 4 (142) 
' 1 + b l f l  2 + f l2fl  4 

The form can be used for both the longitudinal and the transverse contribu- 
tions, if one sets 

a L = 1  a0 T = 0  , (143) 

which guarantees that  the correct weakly relativistic limit is obtained. The 
fact that  q~x,2 must be an even function of fl follows from the time reversal 
invariance. 
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S t e p  3: The coefficients have been fitted to the exact relativistic correction 
to the longitudinal exchange energy, 

AE L L = E=,r~, [nr~, ]  - E . . . . .  t[n,~,-~,] , (144)  

and the exact transverse exchange energy T E ~ , ~ t [ n ~ z ] ,  with all quantities 
being obtained by corresponding ROPM calculations. Explicit results, indi- 
cating their quality, will be shown in Section 5. For the moment we look 

5 

4 total - -  

3 ~ t 

~,~(Z) 

2 

1 
1 /  longitudinal 

0 I I I I i 
0 0.5 1 1.5 2 2.5 3 

f l = h(3rr2n) ta / ( m c )  

Fig. 1, Relativistic correction factors for the gradient contribution to the exchange 
energy density for both ECMV92 (solid line) and B88 (long dashes). Also shown is 
the relativistic correction factor for the second order gradient correction for T~,[n] 
(short dashes). 

at an illustration of the correction factors for the B88 and ECMV92 GGAs 
(Fig.l) and an abbreviated comparison of the constants in the Pad6-ansatz 
for various GGA functionals and the longitudinal term: 

Functional a L a L b L b L 

B88 [54] 12.209 0.669 1.331 0.795 
ECMV92 [55] 2.213 0.669 1.330 0.795 

PW91 [56] 2.216 0.670 1.327 0.794 

It remains to be stated that  we also used other Pad6-forms (eg. [3/3]) without 
finding significant improvements. 
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For the case of the c o r r e l a t i o n  t e r m  basic data  are hard to come by. In this 
case a more global form [53], 

G G A  / _GGA E .. . .  t In] = d3x ( n , ( V n )  2, .) ~c(~) (145) {~c,nrel - -  " " 

has been fitted to second order perturbation theory results (on the basis of a 
Dirac-Coulomb-Breit Hamiltonian) for the Neon isoelectronic series [57], as 
it seemed to be the most systematic set of quantum chemical data  available. 
For the nonrelativistic GGA the Perdew-Wang 91 [56] and the Lee-Yang-Parr 
[58] forms have been used, ~ is again a [2/2] Pad~-approximant. The fitting 
procedure used 

AEc = E . . . .  t in ter] -  Ec,,~[n,,r~t] (146) 

as before, in order to suppress errors in the individual energy values as much 
as possible. 

The last functional to be discussed is the 

4.3 R e l a t i v i s t i c  g r a d i e n t  e x p a n s i o n  for  T,[n] 

As already indicated, this functional is of interest for RETF-applications. We 
discuss it for two reasons First, it provides another example for the need of 
renormalisation. Second, the results exhibit a certain amount of physics [59, 
22]. 

The starting point of the discussion is the definition of the exact kinetic 
energy and the exact current in terms of the exact fermion propagator 

: f + - + T[j  ~] 
J y--*x L \  ] ] 

jU(x_) = - i  lims t r [SF(x ,y ) ' /~]  -- V E V  + C T  . (148) 
y--~x k J 

The symmetric limit indicated is defined as 

1 (  lim ~1 (149) lims = lim + 
y-+x "2 y--rx,yO>xO y-+x,yO<xO I 

(~:-y)~>o 

It is the relativistic equivalent of the nonrelativistic limit 

lim lim 
y_---~ X_ t y ...~ t Tx 

The definitions given are quite general. In order to arrive at the noninter- 
acting situation, one has to replace the exact fermion propagator by the KS 
propagator, which can be specified alternatively by the differential equation 
[60] 

( i ~  - m - ¢~s(~-)) s ~ s (  x, y) = a(4)( * - y) • (150) 
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The standard perturbation expansion of this propagator in powers of the 
potential can be indicated in diagrammar as 

KS = + + . . .  

We have seen the explicit form in terms of KS-orbitals before. Renormalisa- 
tion is not necessary. 

The symmetric limit required for the calculation of Ts and Ju corresponds 
to closing the ends of the fermion lines, after supplying them with the required 
weight, that is 

- i ju= 0 + @ + O ~  + . . . .  V E V + C T  

-iT,=fd3z{O + @ + ~ + " } 

- V E V  + CT . 

We recognise outermost loops (integration), which introduce, as in standard 
QED without external fields, UV-divergencies. It does not make any differ- 
ence whether the virtual electron-positron pairs involved in the loops are 
generated by the photon field or by an external potential. As a consequence 
the renormalisation procedure is the same as the procedure that one uses for 
the renormalisation of the propagators of vacuum QED. A quick inspection 
for ju shows that only the second diagram on the right-hand side is diver- 
gent. For the vacuum four current all contributions with an odd number of 
vertex points in the loop vanish due to Furry's theorem. From the remaining 
diagrams, 

only the first one needs to be renormalised. 
To see how this works, one has to evaluate Ts and j ,  explicitly. We do 

this using a semiclassicM gradient expansion as a first step. 
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In order to obtain the semiclassical gradient expansion (an expansion in 
terms of derivatives of the effective KS-potential) one solves the differential 
equation for the propagator explicitly by iteration [60]. The general ansatz 
for the iteration is the expansion (dropping the index KS) 

d4p O O  

e-'vc -y) z (1 1) 
~ - ~  k=0 

The index [k] denotes the order of the potential gradients involved. Insertion 
of the ansatz into the differential equation yields the recursion 

[ 0 _ iO]S[~_~](p.,  v . ( ~ ) )  (152) 

The starting point for the recursion is the solution of the differential equation 
for a constant potential, 

(153) 
As an example of the explicit results at this level, we look at the second 
order semiclassical gradient expansion of the density n and the kinetic energy 
density t~ for the case of a purely electrostatic external potential v u = (v °, 0), 

fi[v0]~g = 31r2 + 127r 2 

1217r~- { [ E  + 2arsinh ( P )  ] (~72v°) + [ p~- - 3] (zv°)2 } 

1 rE 3 E + arsinh ( p ) ]  (~7v0)2 ' 
12~[~pp 3 p 

where 

E = cF -- vo(x_) ; p =  ~ - -  m ~ O ( E  2 - m 2) . (156) 

The results have been obtained with dimensional regularisation. One recog- 
nises contributions which diverge in the limit d -+ 4. There is a divergent 
contribution to the kinetic energy due to the Dirac-sea, which is removed by 
vacuum energy subtraction 

< vaclI2Ielvac > - 16~. 2 F 2 - . (157) 
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The UV divergencies (proportional to Av0) are removed by the same coun- 
terterms which are the lowest order contribution to the vacuum polarisation 
insertion in standard QED without external fields. 

After renormalisation has been carried out, one has finite (in the limit 
d -+ 4) expressions of the form 

j~ (x) = j" (vu (x_), XTvu (x_),...) (158) 

ts (x_) = ts (v, (x__), ~Tv u (x_),...) . (159) 

The last step is the derivation of a current (or density in the electrostatic 
case) gradient expansion. This is obtained by order by order inversion of the 
first relation 

v u (x_) = v u (ff (x_), _V_A '~' (x_),...) (160) 

and insertion into the second relation. 
We first give the results for the case of an electrostatic external potential 

to the fourth order 

TRGEO[n]= f d% (3~r2n) 5/310r2m 0510[~(flT/3 + f13~ _ arsinh(fl)) - ~/33](161) 

TnC~2[n] = 1 dax ---- 1 + 2 arsinh(/3) (162) 
72m n q 

[tRGE4rn l tRGE4r 1] T~aE4[ n]= d3x [~,y t J+ ~,D [nJ] (163) 

tRGE4 1 ( ~ ~ 3--/34q2 } 
s ,v  - 3 ( v 2 / 3 )  2 + 6  4 

tRaE4-- 1 [4(V2/3)2 [3(1-- 4/3~) + 5( l+2~ars inh( /3))  ] s , D  576-0~. 2 [. 

+ "(V2fl)(V--fl)2 [ 41fl 2 2 0 ( 1 2 ~ a r s i n h ( f l ) )  L - ~ 5  L- + + 

(y )4 [ 
+ ~  3-1913 ~-8/34+8/36+16/3 s 

~ + 2 arsinh(/3) , 

and offer the following comments 

i The zeroth order contribution to the kinetic energy density is the TF (rel- 
ativistic homogeneous electron gas) result, already obtained by Vallarta 
and Rosen in 1932 [61]. 
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ii The second and fourth order terms were only obtained in 1987 [22] and 
1991 [62]. While the results for the second order term are quite compact, 
the result for the fourth order term looks somewhat messy. It contains 

/t (4) ~ which correspond exactly to the explicit radiative corrections ~ s,,~cj, 
Euler-Heisenberg energy (for the case of an electrostatic potential). 

iii The relativistic results go, for small value of fl, over into the corresponding 
nonrelativistic results [63, 64]. 

iv An illustration of the relativistic correction can readily be given for the 
• [ k ]  tEk] zeroth and the second order. In this case the ratio ts,~t/8,,o,r~t is a func- 

tion of fl alone. As in the case of exchange and correlation the relativistic 
corrections are noticeable, especially for the case of t! 2] (see Fig.l).  

v The same technique can be applied to the generation of a current gradient 
expansion for the case of a full four potential [65]. Obviously, there are 
no zeroth order current terms (they vanish in a homogeneous system). 

The current contribution to t~ 2] has the form (fl = (37r2n)l/a/m) 

TfCE2[n, j_j=3/d3x 1 (164) 
arsinh(fl(x_)) 

f f 3 u.t 0 u :' (y)O[jk (z) × j d3y]  d3z E c9k3 (Y)°~Jt(z-)- k:t 

As we will not discuss applications of the RETF model [23, 66] in the follow- 
ing, we offer one brief remark at this point. The model is given by 

K 
E~2K] ---- E T[2i][n] q- Eext[n] '1- EH[n] + ELDA[n] (165) 

i---O 

and often combined with a spherical average of the system. Evaluation of the 
direct variational equations reproduces the gross features of atoms, but does 
not reproduce quantal effects like the shell structure. As the model does not 
involve correlation contributions comparison with Dirac-Fock-Slater results 
is adequate. The results show that  the accuracy that  can be obtained in the 
relativistic case is comparable to the accuracy in the nonrelativistic case. 

5 A p p l i c a t i o n s  t o  a t o m s  

A standard approach to relativistic Coulomb problems is the Dirac-Fock- 
Slater (DFS) approximation, in which the kinetic energy is treated fully 
in terms of relativity, while the nonrelativistic x-only LDA is used for the 
exchange-correlation energy. There are few investigations that  use the rela- 
tivistic LDA exchange functional and only a scatter addressing relativistic 
correlation effects (see eg.[19, 67, 38,68-70, 21,71,72]). In view of this state of 
affairs we set ourselves as a first goal a more detailed investigation of the 
quality of the RLDA functionals that  are available. 
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Table 1. Longitudinal ground state energies (-EtLot) and highest occupied eigen- 
values (-e&k) for closed subshell atoms from nonrelativistic OPM (NROPM [73]), 
relativistic OPM (ROPM [21]) and relativistic HF (RHF [8]) calculations [74] (all 
energies are in hartree). 

Atom 

He (1s1/2) 
Be (251/2) 
Ne (2p3/2 
Mg (3sl/2 
Ar (3p3/2 
Ca (4sl/2 
Zn (4sl/2) 
Kr (4p3/2) 
Sr (5s1/2) 
Pd (4d5/2) 
c a  (551/2) 
Xe (Spa/2) I 
Ba (6sl/2) 
Yb (651/2) 
Hg (6sl/2), 
Rn (6p3/2)1 
Ra (7sl/2) 
No (7sl/2) 

- E l ,  
NROPM ROPM RHF 

2.862 2.862 2.862 
14.572 1 4 . 5 7 5  14.576 

128.545 128.690 128.692 
199.611 199.932 199.935 
526.812 528.678 528.684 
676.751 679.704 679.710 

1777.828 1794.598 1794.613 
2752.028 2788.848 2788.861 
3131.514 3178.067 3178.080 
4937.858 5044.384 5044.400 
5465.056 5593.299 5593.319 
7232.018 7446.876 7446.895 
7883.404 8135.625 8135.644 

13391.070 14067.621 14067.669 
18408.313 19648.826 19648.865 
21865.826 23601.969 23602.005 
23093.258 25028.027 25028.061 
32787.471 36740.625 36740.682 

L 
--£rnk 

qROPM ROPM RHF 
0.918 0.918 0.918 
0.309 0.309 0.309 
0.851 0.848 0.848 
0.253 0.253 0.253 
0.591 0.587 0.588 
0.196 0.196 0.196 
0.293 0.299 0.299 
0.523 0.515 0.514 
0.179 0.181 0.181 
0.335 0.319 0.320 
0.266 0.282 0.281 
0.456 0.439 0.440 
0.158 0.163 0.163 
0.182 0.196 0.197 
0.262 0.329 0.328 
0.427 0.382 0.384 
0.149 0.167 0.166 
0.171 0.209 0.209 

We begin, however, by looking at R O P M - r e s u l t s  in the x-only approx- 
imation [21] in order to assess relativistic effects in a more global fashion. 
Table 1 shows ground state energies for neutral, spherical (that is closed sub- 
shell) atoms in the no-sea~longitudinal approximation. We concentrate on the 
first three columns, in which nonrelativistic OPM-, relativistic OPM- and rel- 
ativistic HF-results can be compared. One notes that for heavier atoms 

(a) relativistic effects are obviously important, 
(b) ROPM- and RHF-results agree quite closely. 

As a specific example for comparison we will use the Hg atom (here and in 
the following). For this atom the relativistic contribution to the total ground 
state energy (in the approximation specified) amounts to 

L o l g L ' R O P M  1 4 7 N R O P M  -1240 .5har t ree  , 
A E  t ,1  : ~ t o t  - ~ t o t  : 

while the energy difference for the two relativistic theories is 

AELot,2 -= EL~ RHF -- I~L'ROPM - 3 9 m h a r t r e e  
~ t o t  = 
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This clearly establishes the need for a relativistic treatment of heavier atoms 
and shows that the ROPM gives an adequate representation of exchange 
effects. The fact that  ROPM results are always slightly higher than RHF- 
energies can be understood on the basis of the reduced variational freedom 
of the ROPM orbitals. 

The trends indicated are also found for the orbital energies of the highest 
occupied orbitals (see Table 1). The relativistic 6sl/2-orbital  in Hg is more 
bound by 

z~£6sl/2 ~ L , R O P M  _ N R O P M  e6s l /2  -- e6sl/2 = - 6 7 m h a r t r e e  = - 1 . 8 e V  , 

while there is little difference between the RHF and ROPM orbital energies. 
The last statement might imply that the orbital energies are the same for all 
ROPM and RHF orbitals. Table 2 (for Hg) demonstrates that this is not the 
case. Although the total energies agree quite closely for ROPM and RHF (and 

Table 2. Single particle energies L (--e,,tj) for Hg from NROPM-, ROPM- and 
RHF-calculations in comparison with DFS-, and RLDA-resuhs (longitudinal limit, 
all energies are in h a r t r e e ) .  

Level NROPM ROPM RHF DFS RLDA 

1s1/2 
2SI/2 
2P1/2 
2P3/2 
3S1/2 
3P1/2 
3P3/2 
3D3/2 
3D5/2 
4s1/2 
4P1/2 
4P3/2 
4D3/2 
4D5/2 
4F5/2 
4F7/2 
5S1/2 
5P1/2 
5P3/21 
5D3/2 
5D5/2 
6S1/2 

2756.925 3047.430 3074.228 3047.517 3044.410 
461.647 540.056 550.251 539.713 539.250 
444.015 518.061 526.855 518.164 517.746 
444.015 446.682 455.157 446.671 446.399 
108.762 128.272 133.113 128.001 127.905 
100.430 118.350 122.639 118.228 118.148 
100.430 102.537 106.545 102.397 102.346 
84.914 86 .201  89.437 86.085 86.060 
84.914 82.807 86.020 82.690 82.668 
23.522 28.427 30.648 28.067 28.046 
19.895 24 .161  26 .124  23 .871  23.854 
19.895 20 .363  22.189 20 .039  20.030 
13.222 13 .411  14 .797  13 .148  13.146 
13.222 12 .700  14 .053  12 .434  12.432 
4.250 3.756 4.473 3.556 3.559 
4.250 3.602 4.312 3.402 3.404 
3.501 4.403 5.103 4.290 4.286 
2.344 3.012 3.538 2.898 2.896 
2.344 2.363 2.842 2.219 2.218 
0.538 0.505 0.650 0.363 0.363 
0.538 0.439 0.575 0.296 0.296 
0.262 0.329 0.328 0.222 0.222 
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we shall see in a m o m e n t  t ha t  this s ta tement  also applies to  the individual  
contr ibut ions  to Eto t ) ,  one finds eg. 

L , R H F  L , R O P M  
- -  ~1s1"2/ = - 2 6 . 8 0 h a r t r e e  ~ l s l / 2  @ 

This difference is (as expected) much smaller than the relativistic corrections 
to the inner orbi tal  energies 

L , R O P M  N R O P M  
Aels112, = easl"2/ -- ~1~1/2 = - 2 9 0 . 5 1 h a r t r e e  

which corresponds to a decrease of  about  10.5 %. The  percentage change 
of  the outer  orbital  is still very large (25.6% for the 6 s l / 2  orbital).  These 
results demons t ra t e  tha t  it is dangerous to a t tach  too close a physical inter- 
pre ta t ion  to  the orbitals  and their energies. Table 3 shows the longitudinal  
x-contr ibut ion to the total  energy in various approximat ions  [21,6]. For this 
quan t i ty  the relativistic correction in Hg amounts  to 

AExL1  = E L ,  R O P M  __ E N R O P M  _ ~  = - 1 9 , 9 6 h a r t r e e  , 

Table  3. Longitudinal (Coulomb) x-only energies ( - E ~ )  for closed subshell atoms 
from NROPM-, ROPM-, RHF-, DFS-, and RLDA-calculations [21, 74] (all energies 
are in har t ree ) .  

AtomJ 

He 
Be 
Ne 
Mg 
Ar 
Ca 
Zn 
Kr 
Sr 
Pd 
Cd 
Xe 
Ba 
Yb 
Hg 
Rn 
Ra 
No 

NROPM ROPM RHF DFS RLDA 

1.026 1,026 1.026 0.853 0.853 
2.666 2.667 2.668 2.278 2.278 

12.105 12.120 12.123 10,952 10.944 
15.988 16.017 16.023 14.564 14.550 
30.175 30.293 30.303 27.897 27.844 
35.199 35.371 35.383 32.702 32,627 
69.619 70.245 70.269 66.107 65.834 
93.833 95.048 95.072 89.784 89.293 

101.926 103.404 103.429 97,836 97,251 
139.113 141,898 141.930 134.971 133.887 
148,879 152.143 152.181 144.931 143,687 
179.062 184.083 184.120 175.926 174.102 
189.065 194,804 194.841 186.417 184.363 
276.143 288.186 288.265 278.642 274.386 
345.240 365.203 365.277 354.299 347.612 
387,445 414.082 414.151 402.713 394,102 
401.356 430.597 430.664 419.218 409.871 
511.906 564,309 564.415 554.242 538.040 
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which is still quite substantial. Comparison with the difference in the total 
energy indicates, however, that kinetic and direct potential effects constitute 
about 98% of the total relativistic effect. The difference between ROPM- and 
RHF-results is again fairly small 

f f i :L,RHF F L , R O P M  - 7 4 m h a r t r e e  A E  ,2 = --x  - - -x  = 

Also included in Table 3 are DFS results. From the difference 

AEL,3 ----- --xEL'RHF -- --xED F S ---- - 1 0 . 9 8 h a r t r e e  

one can infer (in comparison with the difference between the relativistic and 
the nonrelativistic results), that  insertion of a relativistic density into a non- 
relativistic x-functional corrects the deviation from the full relativistic result 
somewhat. 

We now look at R L D A - r e s u l t s ,  first again for the case of x-only (Ta- 
ble 4). In the longitudinal limit, the error of the RLDA for the total energy 
is only of the order of 0.1% for the heavier systems ( 1 7 . 2 0 h a r t r e e  for Hg). 
If one compares this with the error in the x-contribution, one finds that this 
error is solely due to exchange 

Table 4. Longitudinal x-only ground state energies: Selfconsistent ROPM, RHF, 
RLDA and RGGA results for neutral atoms with closed subshells (in h a r t r e e  [74]). 

Ator~ 

He 
Be 
Ne 
Mg 
Ar 
Ca 
Zn 
Kr 
Sr 
Pd 
Cd 
Xe 
Ba 
Yb 
Hg 
Rn 
Ra 

ROPM 
2.862 

14.575 
128.690 
199.932 
528.678 
679.704 

1794.598 
2788.848 
3178.067 
5044.384 
5593.299 
7446.876 
8135.625 

14067.621 
19648.826 
23601.969 
25028.027 

E L ,  - ELj ,  R ° P M  

RHF RLDA RPW91 
0.000 0.138 0.006 

-0.001 0.350 0.018 
-0.002 1.062 -0.024 
-0.003 1.376 -0.001 
-0.005 2.341 0.041 
-0.006 2.656 0.026 
-0.014 4.140 -0.262 
-0.013 5.565 -0.021 
-0.013 5.996 -0.008 
-0.016 7.707 -0.067 
-0.020 8.213 -0.033 
-0.019 9.800 0.085 
-0.019 10.289 0.059 
-0.048 13.272 -0.893 
-0.039 17.204 -0.250 
-0.035 19.677 0.004 
-0.034 20.460 -0.006 
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Table  5. Total relativistic x-only ground state energies: Seffconsistent ROPM, 
RLDA and (R)GGA results for neutral atoms with closed subshells in comparison 
with perturbative RHF data (in h a r t r e e  [74]). 

Atom 

He 
Be 
Ne 
Mg 
Ar 
Ca 
Zn 
Kr 
Sr 
Pd 
Cd 
Xe 
Ba 
Yb 
Hg 
Rn 
Ra 

I _ E, ct , Ro M 

ROPM RHF(p-) R--LD--A ~ PW91 
2.862 0.000 0.138 0.006 0.006 

14.575 
128.674 
199.900 
528.546 
679.513 

1793.840 
2787.429 
3176.358 
5041.098 
5589.495 
7441.172 
8129.160 

14053.748 
19626.702 
23573.351 
24996.942 

--0.001 0.351 0.018 0.017 
--0.002 1.080 -0.024 --0.043 
-0.003 1.408 -0.001 --0.037 
--0.005 2.458 0.041 --0.111 
--0.006 2.818 0.026 --0.195 
--0.014 4.702 -0.263 -1.146 
-0.012 6.543 -0.022 -1.683 
--0.012 7.149 --0.010 --2.014 
--0.013 9.765 -0.069 --3.953 
--0.016 10.556 -0.035 --4.538 
--0.012 13.161 0.083 -6.706 
-0.010 14.050 0.057 -7.653 
--0.023 20.886 -0.896 --17.662 

0.005 29.159 -0.260--27.256 
0.026 35.203 --0.012 -35.149 
0.034 37.391 -0.026 -38.271 

A E  L -~ E L ' R O P M  - E L ' R L D A  : -17.59hartree , 

which amounts  to about  5%. Compared  to nonrelativistic systems, this shows 
tha t  the relative error of the longitudinal  exchange energy is comparable  (Be 
14.5%, Kr 6.1%), so tha t  the LDA-exchange contr ibut ion can as well not  be 
considered to be sufficiently accurate in the relativistic case. 

In Table 5 we look at results obtained for the full relativistic x-functional.  
We first note tha t  inclusion of the transverse contr ibut ion leads to a higher 
ground state  energy 

A E t o t  = g?L,ROPM IzaL+T,ROPM - 2 2 . 1 2 h a r t r e e  
~ t o t  - -  ~ t o t  ~ " 

This  is in accord with the fact, tha t  the transverse te rm has an opposi te  sign 
with respect to the longitudinal  term. The  absolute error of the total  RLDA-  
energy has, however, changed to  2 9 . 1 6 h a r $ r e e ,  an increase by 1 1 . 9 6 h a r t r e e  

with respect to the longitudinal  limit. The  error in the transverse exchange 
energy is (see Table 6) 

A E  T ..~ R T , R O P M  _ ] ~ T , R L D A  : + 2 2 . 1 7  - -  34.20 ---- - 1 2 . 0 3 h a r t r e e  , 
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Table 6. Transverse x-only energies (Ey) for closed subshell atoms: ROPM results 
in comparison with the values obtained by insertion of ROPM densities into the 
relativistic LDA (RLDA) and two relativistic GGAs (RECMV92 and RB88) (all 
energies are in hartree, [74]). 

Atom ROPM RLDA RECMV92 RB88 

He 
Be 
Ne 
Mg 
Ar 
Ca 
Zn 
Kr 
Sr 
Pd 
Cd 
Xe 
Ba 
Yb 
Hg 
Rn 
Ra 

0.000064 0.000159 0.000060 0.000061 
0.00070 0.00176 0.00071 0.00072 
0.0167 0.0355 0.0166 0.0167 
0.0319 0.0654 0.0319 0.0319 
0.132 0.251 0.132 0.132 
0.191 0.356 0.191 0.191 
0.759 1.328 0.760 0.759 
1.420 2.410 1.421 1.419 
1.711 2.878 1.712 1.710 
3.291 5.374 3.291 3.291 
3.809 6.180 3.809 3.809 
5.712 9.114 5.712 5.713 
6.475 10.282 6.475 6.477 
13.900 21.597 1 3 . 8 9 5  13.900 
22.169 34.257 2 2 . 1 6 9  22.169 
28.679 44.382 2 8 . 6 8 1  28.680 
31.151 48.275 31.149 31.151 

which corresponds to a relative error slightly larger than 50%. Obviously, 
there is substantial room for improvement. 

We next look at the correlation contribution in the LDA. As the correl- 
ation contribution in heavier atoms in LDA amounts to about lOhartree, 
with a relativistic correction of the order of 0.5hartree, there is hardly any 
difference if one performs a variational z-only calculation and evaluates the 
correlation-contribution with the resulting density or if one performs a more 
complete variational calculation. As the RPA limit is known not to be an 
accurate approximation to the correlation energy, we suggest to use [21] 

EcRLDA[n] RPA RPA LDA = Ec,.  , [ n ] -  ] + ] . (166)  

We use only the relativistic correction to the RPA, which is added to a 
complete nonrelativistic functional (eg. LDA from Monte Carlo [76]). For high 
densities the RPA contribution in the two nonrelativistic terms cancel, so that 
the correlation energy is given by the relativistic RPA plus the nonrelativistic 
second order exchange graph. For low densities the first two terms cancel, so 
that the correlation energy is given by the more adequate nonrelativistic 
result. 
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Table 7. Comparison of LDA [21], CI (estimated from nonrelativistic 
CI-calculations for the three innermost electrons and the experimental ionisation 
potentials of all other electrons [75]) and MBPT2 [57] correlation energies for neu- 
tral atoms: E NR - -  nonrelativistic correlation energy, AE~ - -  relativistic contri- 
bution in the longitudinal correlation energy, E T - -  transverse correlation energy 
(in the case of the MBPT2 only the dominating Breit contribution to E T is given 

- -  all energies are in mhar t rees ) .  

Atom - E  NR - A E  L - E  T 

MBPT2 CI LDA MBPT2 LDA MBPT2 LDA 

37.14 0.00 He 
Be 
Ne 
Mg 
Ar 
Zn 
Kr 
Cd 
Xe 
Hg 
Rn 

42.04 111.47 0.00 0.04 0.00 
94.34 224.44 0.02 0.02 

383.19 390.47 743.38 0.20 0.38 1.87 0.32 
438.28 891.42 0.75 0.57 

697.28 722.16 1429.64 0.84 2.60 7.92 1.89 
1650.61 2665.20 10.51 10.97 26.43 7.92 
1835.43 3282.95 11.39 19.61 41.07 13.10 
2618.11 4570.56 35.86 44.79 82.32 28.58 
2921.13 5200.19 37.57 64.73 108.75 39.27 
5086.24 8355.68 203.23 200.87 282.74 113.08 
5392.07 9026.90 195.36 257.00 352.60 138.43 

One problem that one encounters for heavier elements, is the fact that  ex- 
perimental total energies (and hence experimental correlation energies) are 
not available. (It is difficult to measure successive ionisation energies of all 
positive ions for heavier systems.) Thus we compare LDA-results with re- 
sults obtained in second order many-body perturbation theory (MBPT) [57]. 
Table 7 illustrates the well-known fact that nonrelativistic LDA correlation 
energies overestimate the correct values by a factor of about two. As better 
density functionals are available for this quantity, one can concentrate on the 
relativistic corrections (here with respect to the LDA). One finds the follow- 
ing situation: While the longitudinal part agrees with the results of MBPT 
(at least within a factor of two, but mostly better), the differences for the 
transverse part are much larger (up to factors of 4). The comparison should 
not be taken as final, as the quality of the results of MBPT is difficult to as- 
sess, but in view of the large differences, it is obvious that also the relativistic 
correlation-corrections need to be improved upon. 

The semiempirical r e l a t i v i s t i c  G G A  e x c h a n g e  f u n c t i o n a l  gives very 
reasonable results. We first consider the total energies in the x-only limit for 
the case of the modified PW91 functional (similar results are obtained for the 
other GGA x-functionals that we have investigated). For both the longitudi- 
nal as well as the full exchange the deviation from the OPM-standard is less 
than 0.2% (for He), for the heavier systems less than 0.01% (see Tables 4,5). 
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Fig. 2. Relativistic contribution AE,  to the x-only energy: Percentage deviation of 
self-consistent RLDA and RGGA results from ROPM-data for neutral atoms. 

If one then looks at the x-contributions (Fig.2), one finds that  these quan- 
tities are also reproduced very closely (with an absolute error of less than 
l O O m h a r t r e e ) .  The relativistic corrections themselves for both the longitudi- 
nal part  as well as the transverse part  agree very closely (which should not 
astonish as these quantities have been fitted). 

The r e l a t i v i s t i c  G G A  c o r r e l a t i o n  f u n c t i o n a l  is not of the same qual- 
ity (see Fig.3), still there is an order of magnitude improvement for the rela- 
tivistic correlation contribution over the LDA (referred to MBPT as a stan- 
dard). The fact that  the situation for the correlation contribution is far from 
settled is illustrated for the case of neutral Xe. For this case the following 
results are available: 

zkEe  = 1 4 5 m h a r t r e e  

= 8 0 m h a r t r e e  

= 1 4 6 m h a r t r e e  

= 1 0 5 m h a r t r e e  

R G G A  [53] 

R L D A  [21] 

D C B  - M B P T 2  [57] 

D C  B - C o u p l e d  - C l u s t e r  [77] . 

6 F i n a l  R e m a r k s  

Here we offer some remarks on additional points and future problems: The 
point tha t  we did not discuss (although we have a large number of case stud- 
ies) is the question in how far the local quantities (rather than the integrated 
quantities) are reasonable. This can most easily be discussed by comparison 
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Fig. 3. Relativistic correction AE¢ to the correlation energy: Percentage deviation 
of self-consistent RLDA- and RGGA-results from MBPT2-data for Ne isoelectronic 
series. 

of the corresponding potentials, which show shell structure and finer effects 
more closely [21,6, 52, 53]. 

Obviously, there is much to be done: First the calculations for atoms 
have to be extended to the case of nonspherical systems (with the possibility 
of "spin polarisation", which in the relativistic case manifests itself in the 
appearance of current contributions). Of greater interest is, however, the 
investigation of relativistic effects in more complex systems, as for instance 

i) Diatomic systems 
--+ changes in bond lengths, dissociation energies etc. 

ii) Solids 
--+ changes in band structure features (eg. Fermi surfaces) and cohesive 
properties 

iii) Pseudopotentials 
--+ as for heavy atoms even the outermost orbitals are affected by rela- 
tivistic corrections, there is a modification of the pseudopotential [70] 

Finally, some topics that have been addressed in the literature but have 
not been presented here (due to the usual lack of time), should at least be 
recorded. 

• The discussion of RDFT has been extended to the case of strong, short 
range interactions on the basis of the field theoretical meson exchange 
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model of nuclear physics, that  is quantum hadrodynamics (QHD). Both 
ETF-  [78,79] as well as KS-applications [80,81] have been given. In the 
latter instance it is of interest to note, that ,  due to the nature of the 
dominant  interaction, results obtained with the x-only LDA agree quite 
closely with HF-results, which are available for a number of nuclei. The 
multiplicative character of the KS-exchange, however, allows also the con- 
sideration of superheavy nuclei [82], which, at the moment ,  are still not 
accessible via the HF-approach. 

• Thermal  R D F T  has been discussed both on the basis of QED [83] as well 
as QHD [84]. Applications are restricted to thermal ETF-models  [85]. 
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